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Abstract

Our duration estimation flexibly adapts to the statistical properties of the temporal context.

Humans and non-human species exhibit a perceptual bias towards the mean of durations

previously observed as well as serial dependence, a perceptual bias towards the duration of

recently processed events. Here we asked whether those two phenomena arise from a uni-

tary mechanism or reflect the operation of two distinct systems that adapt separately to the

global and local statistics of the environment. We employed a set of duration reproduction

tasks in which the target duration was sampled from distributions with different variances

and means. The central tendency and serial dependence biases were jointly modulated by

the range and the variance of the prior, and these effects were well-captured by a unitary

mechanism model in which temporal expectancies are updated after each trial based on

perceptual observations. Alternative models that assume separate mechanisms for global

and local contextual effects failed to capture the empirical results.

Author summary

Our perceptual system can actively adapt to the statistical properties of the environment

in multiple time scales. For example, the perceived duration of an event is biased by the

mean duration of events observed in a relatively long period and also by the durations of

recently processed events. Here we ask whether these two effects reflect the operation of

separate mechanisms or a unitary mechanism. We develop a series of computational mod-

els of independent and unitary mechanisms, and use experimental manipulations that

generate predictions which allow us to evaluate the models. We show that serial depen-

dence, the signature of short-term adaptation, is modulated by the long-term context. The

results are consistent with the predictions of a unitary mechanism model which assumes

the global prior is updated in a trial-by-trial manner. The alternative models that assume

separate mechanisms fail to capture the empirical results. These results provide a
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comprehensive picture of how the timing system jointly adapts to short- and long-term

environmental statistics.

Introduction

The internal representation of temporal information is essential for a wide range of cognitive

functions, from anticipating future events to controlling movements [1–3]. To improve the

precision of temporal perception, the timing system flexibly adapts to the statistical properties

of the current context [4, 5]. For example, when presented with a set of durations in a percep-

tion task, participants have a strong tendency to overestimate relatively short durations and

underestimate relatively long durations. Thus, the perceived duration is biased toward the

mean of the set [4, 6–9], a phenomenon known as the “central tendency effect.” This effect

indicates that temporal perception is sensitive to the global temporal context.

It has also been shown that temporal perception can adapt on a rapid timescale. Partici-

pants’ perception of the current duration is attracted toward the duration of the previous stim-

ulus [10–12]. That is, the duration is perceived to be longer after a relatively long duration

stimulus compared to a relatively short duration stimulus [13–16]. This phenomenon, known

as serial dependence, suggests that the perceptual system is also sensitive to the local statistics

of the environment [17, 18].

Central tendency and serial dependence effects have been observed across a wide range of

perceptual tasks [17–22], indicating that they reflect general principles of how the perception

system adapts to the statistics of the environment. Both phenomena can be explained under a

Bayesian framework [23]. On the one hand, the observers appear to construct a relatively stable

global prior that reflects the distribution of the stimulus set [6, 24, 25]. Following Bayesian

integration, the current perception is biased toward the mean of the global prior, the central

tendency effect. On the other hand, the observer also appears to build a temporal expectancy

based on the most recent stimulus, inducing a bias in judging the duration of the current stim-

ulus towards recently experienced stimuli, the serial dependence effect [26].

Although the central tendency and serial dependence effects describe two ways in which

context can influence behavior, it remains unclear whether they reflect the operation of a uni-

tary process or two separate, adaptive processes. From a unitary view, the perceptual system

continuously updates the global prior based on new observations, and the trial-by-trial updat-

ing of the global prior could influence the subsequent perception, giving rise to serial depen-

dence [10, 11, 27]. Alternatively, there may be two adaptive systems that operate on different

timescales in response to environmental statistics, building up global and local priors that give

rise to central tendency and serial dependence, respectively.

To arbitrate between these hypotheses, we used a temporal reproduction task [6, 28–30] in

which participants reproduce an interval specified by a visual stimulus. Across conditions, we

manipulated the global distribution by sampling the target durations from different temporal

distributions. If serial dependence and central tendency arise from a shared mechanism, the

magnitude of the serial dependence effect would be impacted by the global temporal distribu-

tion. Alternatively, if serial dependence and central tendency arise from distinct mechanisms,

the magnitude of the serial dependence effect would remain invariant across a wide range of

global temporal distributions. We formalized these hypotheses and compared the predictions

of these computational models with the empirical results. By combining our behavioral experi-

ments and model-based analyses, we sought to unravel the computational mechanisms under-

lying the influence of context on temporal perception.
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Results

Serial dependence in time perception is attractive and non-linear

We begin this project by examining serial dependence and central tendency simultaneously in

a widely employed temporal reproduction task, the “ready-set-go” task [6]. Participants

observed a pair of visual events that defined a target interval (“Ready” and “Set”) and then

made a single button press (“Go”), attempting to produce an interval between the Set and Go

signals that reproduced the target interval (Fig 1A). The target durations were randomly sam-

pled from a uniform distribution that ranged from 500 to 900ms.

The reproduced durations exhibited robust regression towards the mean (Fig 2A), replicat-

ing the central tendency effect seen in previous studies [10, 29, 31]. Quantitatively, the slope of

the reproduced duration to the target duration was significantly smaller than one (0.65 ± 0.20;

t(11) = -6.08; p<0.001, S1A Fig). To examine serial dependence, we first calculated a “devia-

tion” index, the difference between the reproduction of a target duration on a given trial and

the individual’s mean reproduction to that target duration across all trials (see Fig 2A). The

serial dependence effect is calculated by the change in the deviation index as a function of the

difference between the previous and the current target durations. This method minimizes

potential artifacts in the serial dependence function that may be induced by regression to the

mean and reproduction biases [32, 33].

We found that the deviation is biased towards the previous stimulus (Fig 2B): When the tar-

get duration on trial n-1 was longer than the stimulus on trial n, the reproduced duration

tended to be longer than average, and vice-versa. This indicates that the reproduction on the

current trial is attracted towards the stimulus duration (or reproduced duration) of the previ-

ous trial. Notably, the shape of serial dependence is non-linear: The attraction effect peaks

when the current stimulus differs from the previous stimulus by approximately 100ms and

then falls off when the difference grows larger.

Fig 1. Trial and task structure. (a) The stimulus sequence used in Experiment 1 (“ready-set-go” task). Two 100-ms stimuli

flashed in sequence, signifying first a "Ready" signal and then a "Set" signal; the target duration was the interval between the

onset times of the "Ready" and "Set" signals. Participants were instructed to press the space bar to reproduce the temporal

interval after the “Set” signal. Performance feedback was conveyed for 50 ms via the color of the fixation cross

(green = correct; red = incorrect). (b) The stimulus sequence used in Experiments 2–4. We used a duration reproduction

task including both go and no-Go trials. A ripple-shaped stimulus was presented for a fixed duration denoting the temporal

interval. After a 300 ms interval, the fixation point became either a "+" sign or “x” sign, signaling either a “go” or “no-go”

trial, respectively. In Go trials, participants reproduced the temporal interval by holding down a key. When the key was

released, the fixation point turned to a grey circle signaling the end of the trial. In the no-Go trial, participants were asked to

withhold any movement and fixate until the "x" switched to a grey circle after 700ms.

https://doi.org/10.1371/journal.pcbi.1011116.g001
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This non-linear function is well captured by a derivative of Gaussian (DoG) curve [17, 32].

To quantify how previous stimuli influence the current perception in experiment 1, we fitted a

DoG to the function of the difference between the target duration in trial n and trial 1-back,

2-back, or 3-back, respectively. We used the instantaneous slope at zero to measure the sign of

serial dependence (see Fig 2B). Positive instantaneous slopes indicate that the current percep-

tion is attracted towards the previous stimulus duration; negative slopes indicate that the cur-

rent perception is repelled from the previous stimulus duration. We found a positive slope

when calculating serial dependence based on trial n-1 (0.092 ± 0.094, t(11) = 3.39, p = 0.006;

Fig 2D), but not when the calculation was based on trial n-2 (0.009 ± 0.079, t(11) = 0.39,

p = 0.70) or n-3 (0.028 ± 0.095, t(11) = 1.00, p = 0.34). To better estimate the magnitude of the

serial dependence effect in response to the previous stimuli, we fit a DoG at the group level.

The DoG provided a good fit (Fig 2B), outperforming the null-model (ΔAICn = -46.3 ± 7.7)

and linear-model (ΔAICl = -18.6 ± 4.6) for the trial n-1 function. The half-amplitude of this

function is 7.6 ± 0.6ms, and the half-width is 95.8 ± 10.1ms (Fig 2C). When analyzed at the

group level, we also get a significant serial dependence effect from trial n-2 (2.4 ± 0.8 ms,

z = 3.00, p = 0.001), but not from trial n-3 (Fig 2C), indicating there might be a weak attractive

effect that is not evident in the instantaneous slopes calculated at the individual level. We

return to this issue below.

Fig 2. Serial dependence in duration reproduction. Experiment 1: (a) Reproduced durations of a representative participant. Grey dots

represent the reproduced duration of each trial. The blue circle represents the participant’s mean reproduced duration for each target

duration. (b) Serial dependence is evident in the non-linear relationship between the deviation index, the current reproduced duration

minus the mean reproduced duration, as a function of the temporal difference between the previous target duration and the current target

duration (positive values indicate the previous target was longer). Filled dots denote individual participants. Empty circles denote the mean

of all 12 participants. The red solid line represents the best-fitted Derivative of Gaussian (DoG) model at the group level. (c) Half-amplitude

of the best-fitted DoG in Experiment 1. Error bars represent an estimate of the standard error obtained from jackknife resampling. (d)

Instantaneous slope obtained from the fitted DoG curve for trials n-1, n-2, n-3, and n+1 trials. Experiment 2: (e) Instantaneous slope

obtained from the fitted DoG curve with respect to n-1 Go, n-1 no-Go trials, n-2 Go trial (when n-1 is no-Go trials), and n+1 (control

condition). (f) Half-amplitude of the best-fitted DoG for trials n-1 and n-2.

https://doi.org/10.1371/journal.pcbi.1011116.g002
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Serial dependence mainly originates from the temporal reproduction

In Experiment 2, we asked whether the serial dependence effect originates from temporal per-

ception or temporal reproduction. To test this, we included No-Go trials in which participants

were instructed not to respond. Temporal reproductions following Go trials could reflect

biases arising from processes associated only with perception, only with motor production,

or both. In contrast, temporal reproductions following No-Go trials should only be influenced

by a perceptual bias. Importantly, the Go/No-Go signal was only presented after the target

duration, ensuring that participants encoded the target duration on both Go and No-Go trials

(Fig 1B).

In trials immediately following Go trials, we replicated the serial dependence effect

observed in experiment 1 (instantaneous slope: 0.114 ± 0.042; Wilcoxon test: z = 2.03,

p = 0.021; Fig 2E) with a half-amplitude of 7.4 ± 0.9ms (Fig 2F) and half-width of

111.0 ± 15.6ms (S3A Fig). In contrast, we did not find a serial dependence effect from the pre-

vious stimulus following a No-Go trial (instantaneous slope: 0.006 ± 0.049; Wilcoxon test:

z = 0.01, p = 0.97; Figs 2E and S3B). This dissociation supports the idea that serial dependence

in timing largely arises from factors associated with temporal reproduction. We recognize that

this may reflect how reproduction is influenced by attention, decision making, memory, or the

response itself. Consistent with this notion, when we examined trial triplets composed of Go-

NoGo-Go trials, we found a serial dependence effect on the second Go trial towards the first

Go trial (rather than the intervening NoGo trial; instantaneous slope, 0.080 ± 0.034, Wilcoxon

test: z = 2.25, p = 0.012; Fig 2E–2F; S3C Fig).

Modeling central tendency and serial dependence

Having established robust signatures of the central tendency and serial dependence effects, we

now ask whether these two effects are generated by a unitary mechanism or reflect separate

mechanisms that are shaped by global and local statistics, respectively. To test this, we formal-

ized our intuitions into a series of computational models.

To explain the central tendency effect, we begin with a Bayesian-least-square model [6] that

assumes the observer’s global temporal expectancy is static (i.e., global prior), with bias con-

strained only by the global distribution of temporal stimuli (Global-Only model, Fig 3A and

3B). The observer’s temporal estimation on a given trial is the Bayesian integration of the

global prior with the actual target duration (corresponding to the likelihood in Bayesian the-

ory). As such, the estimated duration of each trial is biased towards the global prior, giving rise

to the central tendency effect (Fig 4A). However, given that the Global-Only model uses a

fixed prior, the observer’s estimate will not be influenced by the local context (e.g., recently

experienced stimuli). That is, the basic Bayesian model cannot account for the serial depen-

dence effect (Fig 4B).

We next considered a unitary mechanism Bayesian Interference model that assumes that

the observer integrates the likelihood and a local prior based solely on the local context (Local-

Only model, Fig 3E and 3F). The weights of the local prior and likelihood are determined by

the difference between distributions associated with the current sample and recently experi-

enced samples. Specifically, the observer will rely less on the local prior when it is far away

from the likelihood and more on the local prior when it is close to the likelihood. The Local-

Only model can produce a non-linear serial dependence effect (Fig 4B). However, this model

cannot simultaneously capture the observed serial dependence and central tendency effects

(Figs 4A–4C and S4). Parameter values that generate the observed serial dependence effect

produce a smaller than observed central tendency effect. Parameter values that generate the

observed central tendency effect produce an unreasonably large serial dependence effect.
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Thus, a local prior by itself is not sufficient to explain adaptative behavior in the current exper-

iments, indicating that the central tendency effect is not a by-product of serial dependence.

We then considered models capable of simultaneously generating serial dependence and

central tendency effects. First, we considered a unitary mechanism model in which the global

prior is updated across trials (Bayes-Updating model, BU). Given that serial dependence is

driven by temporal reproduction (Exp 2), we assume that, following Bayes rule, the prior is

updated by integrating a Gaussian centered at the reproduced duration. Since the priors and

posteriors are both Gaussians, the Bayesian integration can be simplified into a linear weighted

sum of the means (i.e., a Kalman filter, Fig 3D). This model is mathematically similar to what

has been previously described as an internal reference model [10, 11, 26, 34, 35]. While this

model predicts a central tendency effect and an attractive serial dependence effect, the pre-

dicted serial dependence function is near-linear (Fig 4B), inconsistent with the empirical

results of Exps 1–2.

To get a non-linear serial dependence function, the prior can be updated in a non-Bayesian

manner. We assume that the brain creates the prior distribution by summing multiple

Fig 3. Schematics of the different models. (a) In all of the models, the target duration (green) is represented as a

normal distribution (likelihood) centered at the target duration with perceptual noise. The global prior (blue) is based

on the distribution of the target stimuli. The posterior (yellow) is obtained by multiplying the global prior by the

likelihood. (b) The mean of the posterior is computed as a single-value estimate. The reproduced duration is sampled

from a normal distribution centered on the estimate with motor noise. (c-d) In the BU and MGU models, the observer

updates the prior based on the reproduced duration after the motor response. (c) For the MGU model, a scaled normal

distribution centered at the reproduced duration is added to the old prior, and the new prior is normalized. (d) For the

BU model, the prior is updated with a Kalman filter. (e) For the Local-Only model, the likelihood is integrated with the

local prior in a non-linear manner, with the weight on the local prior increasing when the likelihood and local prior are

similar and decreasing when they are dissimilar. In the DP model, the observer is assumed to hold two priors, one

global and one local. After the posterior is computed based on the global prior and likelihood, the posterior is

integrated with the local prior to generate a second posterior (posterior’). (f) In the second step of the DP and Local-

Only models, the new local prior is fully determined by the motor response of the current trial. As with the other three

models, the reproduced duration is drawn from a normal distribution centered at the mean of the posterior with

motor noise.

https://doi.org/10.1371/journal.pcbi.1011116.g003
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Gaussian distributions with different weights (Mixed Gaussian Updating model, MGU).

When perceiving a new duration, the prior is updated by adding a Gaussian centered at the

reproduced duration to the old prior, followed by normalization (Fig 3C). This kind of compu-

tation has previously been suggested to account for how Purkinje cells in the cerebellum adapt

to the prior for representing temporal information [30]. Since the global prior is updated

locally, the attraction effect from trial n-1 decreases when the duration of the current stimulus

is far from the duration of the n-1 reproduction (Fig 4D). Thus, this model predicts a non-lin-

ear serial dependence function and serial dependence in accordance with the empirical results

in experiments 1–2 (Fig 4A–4C).

In contrast to the unitary mechanism models described above, an alternative way to pro-

duce both serial dependence and central tendency effect is to consider a hybrid model in

which the two biases arise from two distinct processes (Dual Priors model, DP). Specifically,

the DP model assumes that the current stimulus (likelihood) is integrated with a static global

prior (Fig 3A), generating central tendency. The posterior is then integrated with a local prior

(Fig 3F), inducing non-linear serial dependence. As such, the Dual Priors model can predict

both the central tendency and non-linear serial dependence effects observed in the data (Fig

4A–4C). Note that these two effects are generated by two mechanisms that adapt separately to

the global and local temporal context.

In sum, our computational analyses point to two candidate models that can account for the

observed central tendency and serial dependence effects. These two models diverge in that the

Fig 4. Model simulations. Predicted central tendency (a) and serial dependence (b) effects for the five models. (c)

Predicted relationship between central tendency and serial dependence for the models. Each line is the prediction of

one model, and each dot is the prediction with a specific learning rate parameter. The half-amplitude increases with

the learning rate. The blue “+” represents the empirical data. The length of the bars indicates SE. (d) Illustration of how

the MGU model generates a non-linear serial dependence. For illustration purposes, we depict the n-1 prior as a broad,

uniform distribution ranging from 500-1900ms, the range used for the long condition in Exp 3. When the current and

previous durations are close (left), the previous duration can influence the shape of the prior in the range around the

current duration and make the current posterior shift more relative to the likelihood. In this region, the bias of the

posterior increases with the distance between two successive stimuli. However, when the current and previous

duration are distinct (Right), the previous duration cannot influence the shape of the prior around the likelihood, and

thus, the attraction effect decreases.

https://doi.org/10.1371/journal.pcbi.1011116.g004
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MGU model postulates that central tendency and serial dependence effects arise from a uni-

tary mechanism (non-linear updates to a global prior). In contrast, the DP model postulates

that these two effects arise from separate mechanisms (a fixed global prior paired with updates

to a local prior). In the following sections, we sought to arbitrate between the MGU and the

DP models.

Contextual effect on serial dependence

A key difference between the MGU and DP models is that the latter assumes the local prior is

mainly determined by the duration of trial n-1; as such, a serial dependence effect from the n-2

trial will be very weak. In contrast, the MGU predicts a robust serial dependence effect from

trial n-2, given that all (recent) observations are integrated into the prior. In experiment 1, the

group level analysis indicated a positive serial dependence effect from the n-2 trial. However,

this effect was not observed in the individual analyses of the instantaneous slope values.

To address this discrepancy, we sought to enhance the serial dependence effect and examine

whether it will be manifest beyond trial n-1. The MGU and DP models both predict that

extending the range of the durations in the test set will enhance the trial n-1 serial dependence

effect (Fig 5). In the DP, sensory noise scales with duration, a form of Weber’s law. Because of

this, the likelihood becomes relatively flat when the range is increased (Fig 5E). This will result

in a greater influence of the previous production and, thus, a strengthening of the serial depen-

dence effect (Fig 5F–5G). Sensory noise also influences the serial dependence effect in a similar

way in the MGU. In addition, the MGU model postulates that the observer builds a concen-

trated prior when the range is limited (Fig 5D right). As such, the prior is resistant to updating,

yielding a weak serial dependence effect. When the range is expanded, the prior becomes more

distributed (Fig 5D left), resulting in a more pronounced local change after each update, and

thus, a stronger serial dependence effect (Fig 5B and 5C). Importantly, as noted above, the

MGU and DP models generate very different predictions regarding concerning a trial n-2

serial dependence effect (Fig 6A): The MGU predicts that the serial dependence effect should

be observed from trial n-2, with a half-amplitude slightly attenuated relative to trial n-1,

whereas the DP predicts almost no serial dependence effect from trial n-2.

Given the predictions of the two models, we extended the range of the target durations in

experiment 3. We applied two test sets, one ranging from 520-1260ms (Medium range) and

the other from 560-1860ms (Large range, Fig 5A). We compared the results with those

obtained in Experiment 1, in which the target durations ranged from 520-880ms (Short

range). Extending the range of target duration successfully enhanced the serial dependence

effect from trial n-1. The best-fitted DoG of the medium condition (ΔAICn = -27.5 ± 4.2;

ΔAICl = -10.8 ± 2.2) and long condition (ΔAICn = -20.7 ± 4.4; ΔAICl = -10.0 ± 2.1) had a

higher peak and was broader than that for the short condition (Fig 5H). Correspondingly, the

half-amplitude increased as the distribution became wider (Fig 5I; medium: 11.8 ± 0.9 ms;

long: 22.6 ± 2.0 ms; Zs> 4.9, ps< 0.001). Similarly, the half-widths also increased as the distri-

bution became wider (Zs > 10.5, ps< 0.001), indicating an influence from more distant pro-

ductions on the previous trial when the test set range increased.

The key question in Experiment 3 centers on the trial n-2 data: Will the increase in the mag-

nitude of the serial dependence effect from trial n-1 be accompanied by a stronger serial

dependence effect from non-adjacent trials? In the analysis of the individual functions, there

was a significant positive instantaneous slope for the trial n-2 data in both the medium and

long conditions (Fig 6B). Trial n-3 also showed a tendency for a positive bias, although this did

not reach significance. Moreover, fitting the DoG at the group level showed a significant posi-

tive half-amplitude for the serial dependence function from trial n-2 (Fig 6C). Thus, the results
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Fig 5. The range of the target duration distribution influences the serial dependence effect. (a) Distributions of target

durations in different contexts. (b-c) Simulations of the MGU model predict that the half-amplitude of the serial dependence

effect will increase as the range of target duration is increased. (d) In the MGU model, changing the range of the target

durations will impact the width of the prior and, therefore, the serial dependence effect. (e) In the PD model, since the scalar

property in time perception such that the ratio between the SD and mean is a constant, the likelihood will become flatter as

the target duration increases. (f-g) Simulations of the DP model also predict that the half-amplitude of serial dependence

increases substantially as the range of target duration is increased. (h) Serial dependence effects for trial n-1 in the medium

(left) and long condition (right). Filled dots represent individual participants. Blank circles represent the average of all

participants. The turquoise and blue lines represent the best-fitted DoG in the medium and long conditions, respectively.

The red and green dash lines represent the best-fitted DoG in Experiments 1 and 2, respectively. (i) Half-amplitude of the

best-fitted DoG for serial dependence effect from trial n-1 in Experiments 1, 2, and 3 (medium and long conditions). Each

filled dot represents an estimate from jackknife resampling. Error bars represent standard error.

https://doi.org/10.1371/journal.pcbi.1011116.g005
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are consistent with the prediction of the MGU model and fail to support the DP model (Fig

6A). Moreover, the MGU is consistent with the central tendency effect in all conditions (short,

medium, long), further supporting the idea that the process that produces the serial depen-

dence effect uses local information to update the prior (S1F Fig).

We note that in the original version of the DP model, the local prior is decided by the poste-

rior of the 1-back trial. Here we implemented a more general version of the DP model, the

Dual-prior short-term memory (DPSM) model, in which the updating of the local prior after

each trial incorporates information from previous trials with diminishing weight. The DPSM

model generates a serial dependence from the 2-back trial (S5 Fig). However, the model pre-

dicts a near-linear serial dependence function, a prediction at odds with the data. Moreover,

for the 1-back serial dependence function, the DPSM model predicts the direction of the serial

dependence will flip when the current and previous stimuli are distinct from each other; this

prediction is also not consistent with the data. In sum, adding a more graded working memory

component to the dual prior model cannot account for the results of our experiments.

The variance of prior increases serial dependence

The MGU and DP models also make differential predictions when the variance of the target

distribution is manipulated (Fig 7A). In Experiment 4, we set the mean of the target set distri-

bution to 900 ms (the medium condition of Experiment 3). In one condition, we created a set

with low variance (720-1080ms, short-900) compared to that used in experiment 3, where the

variance was larger (540-1260ms). In the second condition, we used a bimodal distribution to

increase variance. The GMU predicts that the serial dependence effect will be enhanced as the

variance of the target distribution is increased (Fig 7B). The logic here is similar to that

described above in terms of the range of the distribution: Because a low variance test set, by

definition, is more concentrated, the effect of trial-by-trial updating of the prior will be smaller

relative to when the variance is high. In contrast, the DP predicts that the variance of the test

set will have little effect on serial dependence (Fig 7C).

Consistent with the prediction of the MGU, the serial dependence effect was modulated by

the variance of the test set. For the trial n-1 data, the best-fitted DoG in the bimodal condition

(ΔAICn = -78.6 ± 5.6; ΔAICl = -18.3 ± 3.6) yielded the highest and broadest serial dependence

function of the three conditions (Fig 7E); the short-900 condition (short-900: ΔAICn =

-48.3 ± 7.8) showed the lowest and narrowest function (Fig 7D). Statistically, the half-ampli-

tudes of the functions increased as the variance of the prior increased (short-900: 8.7 ± 0.6 ms;

Fig 6. The serial dependence effect becomes stronger when the range of the test distribution increases. (a)

Simulation of the half-amplitude with the MGU model (left) and the DP model(right). The upper two panels depict

simulations for the long-range condition, and the lower two panels depict simulations for the medium-range

condition. Simulations of the MGU model can produce robust serial dependence effects from trial n-2, whereas the DP

model fails to predict this effect. (b) Instantaneous slope of the DoG-fitting curve for trials n-1, n-2, n-3, and n+1

(control condition) in the medium and long conditions. The p-values are with respect to the difference from zero. (c)

Half-amplitude of the best-fitted DoG for the n-1 and n-2 trials in the medium (left) and long (right) conditions.

https://doi.org/10.1371/journal.pcbi.1011116.g006
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medium: 11.8 ± 0.9 ms; bimodal: 18.7 ± 0.8ms, Zs>4.2, ps<0.001, Fig 7F). In the analysis of

the individual functions, the serial dependence effect was found in both trial n-1 and trial n-2

in the bimodal condition, similar to what was found in the medium condition. In the short-

900 condition, serial dependence effect was only significant from trial n-1 (S6 Fig). In sum, the

results provide additional evidence that serial dependence is enhanced in higher variance test

sets.

Taken together, the results from Experiments 3 and 4 are consistent with the predictions of

the MGU model, and at odds with the predictions of the DP model. Manipulations of the dis-

tribution properties of the test set indicate that a unitary process gives rise to both the central

tendency and serial dependence effects.

Discussion

The internal representation of duration is context-dependent. Previous work has identified

two sources of contextual bias, a central tendency bias in which the temporal representation is

attracted towards the mean of a global prior, and a serial dependence effect in which recently

experienced durations serve as attractors on the current representation of a stimulus duration

[6, 19, 24, 27, 31]. In the current study, we asked whether the central tendency and serial

dependence effects arise from a common mechanism or separate mechanisms.

Fig 7. Serial dependence effect becomes stronger when the variance of the test distribution increases. (a)

Illustration of the distributions of target durations in experiment 4. The short-900 condition (purple) has the same

mean as the medium condition (turquoise). The bimodal (orange) has the same range as the medium condition but

has larger variability. (b-c) Predicted half-amplitudes of the DoGs for the different conditions by the MGU and the DP

models. (d-e) Serial dependence effect for trial n-1 of the short-900 condition (d) and bimodal condition (e). Note the

scale for the x-axis is different in d and e (and thus, the function for the medium condition looks different). Each filled

dot represents a participant. The open circles indicate the average across participants. The purple, orange, and

turquoise lines represent the best-fitted DoG for the short-900, the bimodal-medium, and the medium conditions,

respectively. Each filled dot represents one participant. Error bars represent standard error. (f) Half-amplitude of the

best-fitted DoG for the trial n-1 data in Experiments 1, 2, and 4. Each filled dot represents an estimate from jackknife

resampling. Error bars represent standard error.

https://doi.org/10.1371/journal.pcbi.1011116.g007
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We performed a series of temporal reproduction tasks in which we manipulated the distri-

bution of the target duration. We observed central tendency and serial dependence effects in

all of the experiments. Although many studies have shown a central tendency in duration per-

ception[6, 24], the properties of a short-term contextual effect, serial dependency, is less clear.

The designs and analyses used in previous work have precluded the analysis of the whole serial

dependence function[11, 27]. In the current study, we consistently observed a non-linear serial

dependence effect in temporal reproduction. By using a Go/No-Go task[32], we found that the

effect was dependent on movement reproduction: There was an attraction effect from the pre-

vious target duration after a Go trial, but no observable effect after a No-Go trial.

To determine if long- and short-term contextual effects arise from a single or distinct

Bayesian processes, we compared five computational models. We first examined two unitary

models, one with a static global prior established during the initial phase of the experiment[6],

and one with a local prior dictated by recent experience. Each unitary model could not account

for both the observed central tendency and serial dependence effects. To generate both effects,

we considered three more complex models. In one of these, we assumed that there were two

separate mechanisms, one based on a global prior and one based on a local prior. For the other

two models, a unitary mechanism included a process by which the global prior was continu-

ously updated by recent experience. We rejected the unitary model in which the prior is

updated in a Bayesian optimal manner since it generated a near-linear serial dependence func-

tion. In contrast, simulations of the MGU unitary and DP models yield central tendency and

non-linear serial dependence effects.

To further explore the viability of the MGU and DP models, we considered predictions of

the two models when we manipulated either the range or variance of the test stimuli. While

both models predict that the amplitude of the serial dependence effect from the preceding trial

will increase with the range of the test stimuli, only the MGU model predicts that this manipu-

lation will also enhance the serial dependence effect from earlier trials (e.g., n-2). Furthermore,

the MGU model predicts that the serial dependence effect will be enhanced when the variance

of the test set is increased, even when the mean duration is fixed, whereas the DP model pre-

dicts that the variance of the prior should have negligible influence on serial dependence. The

results showed that, when extending the range of the test set, the serial dependence effect was

enhanced and evident in terms of the context established from the n-2 as well as the n-1 stimu-

lus. Moreover, even we included a short-term memory component to the DP model which

allows the local prior to be decided by multiple recent trials, it still fail to generate a DoG-

shaped serial dependence function for the 2-back trial as what has been observed in the data.

Similarly, the serial dependence effect was enhanced when increasing the variance of the test

set. Together, these results provide strong support for the MGU model, indicating that the

global bias and serial dependence effects arise from a unitary mechanism in which a single

global prior is continuously updated after each trial by the reproduced stimulus duration.

We have presented evidence that a single prior which is dynamically updated across trials is

sufficient to explain both the serial dependence and central tendency effects, as well as how

they are jointly modulated by the distribution of the test set. Simple dual-prior models with a

fixed global prior accompanied by a Gaussian-shaped or single-value prior determined by the

most recent experience (1-back trial or short-term memory) cannot account for the behavioral

results. Nonetheless, we cannot rule out that the pattern of results reported across the experi-

ments can be captured by alternative multiple process models. One such possibility is a model

that incorporates multiple processes, each adhering to the MGU model, but exhibiting distinct

learning rates. However, on the grounds of parsimony, the single process MGU model pro-

vides a comprehensive account of the data, setting a point of comparison for future research.
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The nonlinearity of the serial dependence function sheds light on how the prior is updated

based on recent experience. Updating could follow a simple Bayesian optimal integration rule

with the prior represented as a Gaussian. While this model generates a serial dependence

effect, the shape of the function is approximately linear (BU, see Fig 4B). To capture a non-lin-

ear serial dependence function, we assumed that the prior is updated by increasing the weight

of the Gaussian centered at the recently reproduced duration. One benefit of representing the

prior with a Gaussian mixture model is that it provides a way to represent the effects of any

test set, regardless of its distributional shape. Indeed, previous studies have also shown that a

mixture of Gaussians provides a good fit of the internal prior in duration perception experi-

ments [30, 36]. Here we show that an updating rule based on this assumption can account for

the non-linear serial dependence function as well as how the function will shift when the vari-

ance of the test set is manipulated.

As noted above, the serial dependence effect was contingent on the participant having pro-

duced a response; it was markedly attenuated after No-Go trials. In theory, it is possible that

this local effect is reflective of some sort of motor memory, where the current motor reproduc-

tion is directly biased by the previous motor reproduction, with the perceived duration unbi-

ased. However, we think it is more likely that the serial dependence effect is mediated by

perception: A prior of temporal expectation is constructed from the reproduced duration, and

this prior biases the perception of subsequent target stimuli, which in turn, will be reflected in

the next reproduced duration. In support of this idea, several studies have shown that making

a movement of a variable duration influences performance on a subsequent duration compari-

son task in which no motor reproduction was made [12, 37, 38].

We note that serial dependence effects have been observed in previous studies that did not

involve motor responses, including judgments of duration [13–16] or visual orientation or

position [32, 33, 39].Thus, we do not claim that the absence of a serial dependence effect in the

No-Go condition of Exp 2 should be taken to mean that movement is a necessary prerequisite.

As with all null results, caution is warranted. It is possible that the design used in Exp 2 may

have been insensitive to capture a perceptual contribution to the serial dependence effect.

Alternatively, the absence of a perceptual may be specific to the duration reproduction task

used in our experiments. Indeed, there is evidence from duration comparison tasks without

reproduction of an attractive sequential effect [11, 40]. Follow-up experiments are needed to

understand the factors that determine the weight given to perception and production in form-

ing the prior.

We recognize that, in evaluating the five models, we assumed that a global prior was estab-

lished during the initial phase of the experiment. Obviously, establishing a global prior requires

some integration of the local context as the participant becomes familiar with the stimulus set.

We set our initial “training” phase based on previous studies, which have shown that partici-

pants are able to generate a relatively accurate global prior of the temporal context after about

100 trials [21]. One open question is how the prior updating rate changes as a function of

training. In our dynamic models, we assumed that the rate remained constant over the course

of the experiment. However, it is possible that the rate of updating weakens as the prior

becomes more established. Correspondingly, the serial dependence effect might become

weaker over time. However, this temporal expectation system might be a rigid system that

recalibrates the environment with an invariant learning rate. This characterization conforms

with a conceptualization of the operation of the cerebellum in sensorimotor adaptation, and

the same principles might apply to duration representation, another function associated with

the cerebellum [41, 42]. The data set in the current experiments are insufficient to examine the

dynamics of updating, and we see this as an important issue to be addressed in future studies.
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In summary, the current study provides new insights into how context influences our sense

of duration. The perception of the duration of a stimulus is sensitive to both the global distri-

bution of the stimulus set as well as recent experience. Importantly, by examining the central

tendency and serial dependence effects in a joint manner, we observed that these two forms of

bias are best explained by a unitary mechanism in which a global prior is updated in an itera-

tive manner based on each observation. Given that central tendency and serial dependence

effects are ubiquitous in perception tasks [6, 18, 19, 31, 39, 43], the common Bayesian frame-

work developed here may provide a general account of how perceptual systems adapt to envi-

ronmental statistics.

Methods

Ethics statement

All experimental protocols were approved by the institutional review board of the School of

Psychological and Cognitive Sciences, Peking University, and carried out according to the

approved guidelines. Written informed consent was obtained from all participants.

Participants

A total of sixty-four students at Peking University were recruited for the four experiments. All

participants were right-handed with normal or corrected-to-normal vision. In Experiment 1,

thirteen participants (8 females, mean age = 21.1, SD ± 1.0) were recruited for the two 1-hour

sessions. One participant did not return for the second session. In Experiment 2, twelve partic-

ipants (8 females, mean age = 24.1, SD ± 4.2) completed two 1.5-hour sessions. In Experiments

3 and 4, 52 participants (15 females, mean age = 21.1, SD ± 2.1, 13 for each of the four condi-

tions) completed a 1-hour experiment. Participants received $10/h as compensation.

Testing was conducted in a dark room, and the stimuli were presented on a 27-inch LCD

monitor (resolution of 1,024 × 768), viewed from a distance of 65 cm. The computer used a

Windows 8 operating system with a refresh rate of 100 Hz. The experiment was written in

MATLAB (Mathworks, Natick, MA; Psychophysics Toolbox Brainard, 1997;[44]).

Procedure and design

Experiment 1. We used a “ready-set-go” time-reproduction task[6] (Fig 1A) to measure

global (central tendency effect) and local (serial dependence effect) biases. Each trial started

with the presentation of a gray fixation point (0.5 degrees diameter) at the center of the screen.

After a random interval ranging from 0.7–1.2 s (drawn from an exponential distribution), two

100-ms stimuli flashed in sequence, with the first serving as the "Ready" signal and the second

serving as the "Set" signal. The visual stimulus was either a grey ripple-shaped arc (Exp 1) or a

circle (Exps 2–4) (see Fig 1) with a radius of around 12 degrees.

The interval between the onset times of the "Ready" and "Set" signals defined the target

interval. Participants were instructed to press the space bar (“Go”) to reproduce the target

interval, with the onset of the reproduction interval defined by the “Set” stimulus. After the

keypress, performance feedback was provided for 50 ms via a change in the color of the fixa-

tion point: Green indicated that the reproduced duration was within an acceptable window,

and red indicated that the reproduced duration fell outside this window. The criterion window

was continuously adapted based on the participant’s performance such that green and red

appeared with roughly equal probability. The feedback was provided to encourage the partici-

pant to pay attention to the task. It was relatively uninformative (e.g., did not provide signed
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information) because we did not want participants to correct their timing based on the

feedback.

Each participant completed two sessions, with each session composed of 10 blocks of 200

trials (2000 trials total). A one-minute break was provided every two blocks. The stimulus set

consisted of ten target durations, ranging from 520 to 880 ms (step size of 40 ms). Target dura-

tion was randomized within a block of 100 trials with the constraint that each duration was

presented 10 times.

Experiment 2. The goal of Experiment 2 was to evaluate whether the source of the serial

dependence effect is perceptual, motoric, or a combination of both. To test this, we included

Go and No-Go trials in a duration reproduction task.

After a random interval ranging from 0.7–1.2s (following an exponential distribution), a

ripple-shaped stimulus was presented for the target duration. The spatial distribution of

brightness was constant, but the actual shape varied across trials to avoid repetition suppres-

sion effects [45–48]. Crucially, 300 ms after the offset of the target stimulus, the fixation point

changed to either a "+" or “x”, with these symbols indicating that the current trial was a Go or

No-Go trial, respectively. In Go trials, participants were instructed to depress the space bar for

a duration that matched the target duration. The fixation point changed back to a grey circle

right after the release of the keypress. On No-Go trials, participants were asked to fixate with-

out movement until the "x" disappeared. On these trials, the grey circle reappeared after

700ms, indicating the start of a new trial. Note that no time constraints were imposed on Go

trials; thus, we anticipated there would be few errors of omission (Go trials) or commission

(No-Go trials). However, we assumed that the target duration would be similarly encoded on

all trials since the “+” or “x” did not appear until after the target stimulus.

There were five target durations (540, 620, 700, 780, and 860 ms), with each target duration

repeated on 360 trials. For each target duration, 60% were Go trials and 40% were No-Go tri-

als. Target duration and response requirements were randomized within blocks of 180 trials.

Each session consisted of five blocks (1800 total trials across the two sessions), with a one-min-

ute break between every two blocks.

Experiment 3. The goal of Experiment 3 was to assess how the serial dependence effect is

impacted by the range of the stimulus set. To test this, we employed two new stimulus sets: A

medium condition (540, 720, 900, 1080, 1260ms) and a long condition (560, 880, 1200, 1520,

1840ms). We compared performance with these sets to the data from Experiments 1–2 (where

the range was shorter, 540-860ms). The procedure in Experiment 3 was identical to that of

Experiment 2, except that only Go trials were included. There were five blocks of 150/120 trials

(medium/long condition), resulting in a total of 750 trials for the medium condition and 600

trials for the long condition. The difference was imposed to keep all sessions within one hour.

The target duration was selected at random on each trial with the constraint that each condi-

tion occurred an equal number of times within each block.

Experiment 4. The goal of Experiment 4 was to examine how the serial dependence effect

is impacted by the variability of the stimulus set. To test this, we employed two new stimulus

sets. For the short-900 condition, the test set ranged from 720–1080 ms (steps of 40 ms,

mean = 900 ms). This group has the same mean as the medium condition in Experiment 3 but

with a shorter range (equal to that used in Exps 1 and 2). In this way, the variance of the test

set is smaller than that of the medium condition. For the bimodal-medium condition, the test

values were the same as that used in the medium condition of Experiment 3, but the extreme

values (540 ms and 1160 ms) were presented three times as often as the other three test dura-

tions (670, 900, 1030ms). The short-900 condition included 10 blocks of 200 trials, and the

bimodal condition included 10 blocks of 135 trials.
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Data analysis

The logic of these experiments is predicated on the assumption that participants are familiar

with the temporal context. Given this, the first block of each experiment (approx. 7–10 min-

utes of data collection) was treated as the familiarization phase and not included in the analy-

sis. In addition, reproduced durations shorter than 0.3 s or longer than 1.5s (2.5s for

Experiments 3–4) were considered outliers and excluded from the analyses (less than 0.1% of

trials).

The central tendency bias or regression to the mean was quantified as the regression coeffi-

cient between the reproduced durations and the target durations. To analyze the serial depen-

dence effect, we used a “deviation” index. For each individual, the average reproduced

duration was calculated for each target duration. The deviation was defined as the reproduced

duration for a given trial minus the mean reproduced duration of all trials with that target

duration [32, 33]. Positive values indicate that the reproduced duration for the present trial

was longer than the average reproduction for that target and negative values indicate that the

reproduced duration was less than the average reproduction.

To quantify the magnitude of the serial dependence effect, a simplified DoG curve was fit to

describe the deviation index as a function of the difference between the current target duration

and reference duration, where the reference could be the target duration of the previous trial

(n-1), two trials back (n-2), etc., as well as following trial (n+1, serving as a baseline):

y ¼ abcxe� ðbxÞ
2

;

where y is the deviation, x is the relative target duration of the previous trial, a is half the peak-

to-trough amplitude of the derivative-of-Gaussian, b scales the width of the Gaussian deriva-

tive, and c is a constant,
ffiffiffi
2
p

=e� 0:5, which scales the curve to make the a parameter equal to the

peak amplitude. As a measure of serial dependence, we report half the peak-to-trough ampli-

tude (half-amplitude) and half the width of the best-fitted derivative of a Gaussian. A positive

value for the a parameter indicates a perceptual bias toward the target durations of the previ-

ous trials. A negative value for the a parameter indicates a perceptual bias away from the target

durations of the previous trials.

We fit the Gaussian derivative at the group and individual level using constrained nonlinear

minimization of the residual sum of squares. Jackknife resampling was applied to estimate the

variation of the parameters for the group-level fit, where each participant was systematically

left out from the pooled sample. The standard deviation of those estimates represented the

standard error of the parameter at the group level. The half-amplitude and half-width of the

best-fitted DoG were compared between groups with a t-test, where the t-value was computed

with the mean and the variance of the parameters estimated from the jackknife resampling

procedure. Bonferroni correction was applied for multiple comparisons. To test the goodness-

of-fit of our model, we computed the ΔAIC for the DoG model compared with either a non-

model (y = 0, ΔAICn) or a linear model (y = kx, ΔAICl). A negative ΔAIC indicates DoG per-

formed better than the alternative models.

To determine the extent of serial dependency, we fitted individual serial dependence func-

tions in which the reference could be the target duration of the previous trial (n-1), two trials

back (n-2), etc. We also tested the serial dependence function for the n+1 trial. Given that this

reference stimulus has not been experienced, there should be no serial dependence effect here,

providing a test of whether the deviation measure is a valid index to analyze serial dependence.

Since individual serial dependence functions do not always show a strong nonlinearity, a
parameter (half-amplitude) can become unreasonably large. Thus, we opted to use the instan-

taneous slope of the DoG at the inflection point (abc) when estimating the presence of a serial
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dependence effect at the individual level. Note that this index measures the sign of the serial

dependence independent of whether or not the function is linear.

In Experiment 2, the Go trials were sorted into two groups based on whether the repro-

duced interval on that trial was preceded by a Go trial or a No-Go trial. We calculated the aver-

age reproduced durations and the deviation using the same protocol as Experiment 1 and then

fit DoG functions separately for the Go/Go trial sequence and the No-Go/Go trial sequence to

measure the serial dependence effect from trial n-1. For each function, we calculated the

instantaneous slope of the DoG at the inflection point. Note that if the serial dependence effect

is dependent on a motor response, there should be no serial dependence effect when the pre-

ceding trial was a No-Go trial. For Go trials preceded by a No-Go trial, we also analyzed the

serial dependence effect from n-2 Go trials. Group-level DoG fitting was performed on n-1

and n-2 Go trials separately to quantify the amplitude of serial dependence.

One-sample t-tests and paired t-tests were applied at the group level for comparisons. Nor-

mality and equal variance assumptions were assessed prior to the t-tests. The Wilcoxon Sign-

rank test was applied when the normality assumption was violated. Two-tailed P values are

reported for all statistic tests, and the significance level was set as p < 0.05. All analyses were

performed with MATLAB 2018b (The MathWorks, Natick, MA).

Models

To account for central tendency and serial dependence effects, we implemented five Bayesian

models: Two single process models (Global-only, Local-Only), a model with both a static

global prior and a local prior (Dual-prior), and two unitary models that capture how a global

prior is dynamically updated by recent experience (Bayes-Updating & Mix-Gaussian-

Updating).

Global-Only model

This model is based on a Bayesian observer model that uses a Bayes-Least-square as the map-

ping rule [6]. We assume that the observer builds up an internal prior, π(ts) based on the target

durations (ts) observed during an initial exposure phase, and subsequent judgments are made

by reference to this static prior. The likelihood function describes the probability of the per-

ceived duration (tp) given ts.

pðtpjtsÞ ¼ Nðtpjts; vpÞ ð1Þ

where N(x|m, s) represents a normal distribution with mean m and standard deviation s, and

vp scales the sensory noise. The posterior, π(ts|tp), is the product of the prior multiplied by the

likelihood function and appropriately normalized.

p tsjtp
� �

¼
pðtpjtsÞ pðtsÞR
pðtpjtsÞ pðtsÞdts

ð2Þ

The loss function, l(te, ts), was used to convert the posterior into a single estimate, te, the

mean of the posterior in the present situation.

lðte; tsÞ ¼ ðte � tsÞ
2

ð3Þ

te ¼ argmin
te

½

Z

lðte; tsÞ∗pðtstpÞdts� ð4Þ
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The Bayesian observer makes a response based on te:

pðtrjteÞ ¼ Nðtrjte; vmÞ ð5Þ

where tr is the reproduced duration, and vm scales the motor noise. Previous studies [6, 9] have

shown that scalar forms of perceptual and motor noise provide a better fit of the behavior com-

pared to when vp and vm are treated as constants. Thus, we set vp as np*ts, and vm = nm*te,
where np and nm are constants.

For this baseline, Global-only model, we simulated the results under the assumption that

the prior was established based on a data set that would be experienced during the first 7–10

minutes of the experiments, and then remained fixed for the duration of the experiment. We

assumed that participants learn the true distribution of target durations as the prior:

pðtsÞ ¼ Uðts; ½500 ms; 900 ms�Þ ð6Þ

where U(x, [y, z]) represents a uniform distribution ranging from y to z.

Local-Only model

To capture the serial dependence effect, we adapted a Bayesian integration model from a previ-

ous study that examined serial dependence in magnitude estimation [26]. In the current con-

text, this model assumes that the observer integrates the previous response (tr) with the

current stimulus (ts) when estimating the duration of the current stimulus:

te;i ¼ ð1 � Wi� 1Þts;i þWi� 1tr;i� 1 ð7Þ

where te,i and ts,i indicate the te and ts of trial i, and tr,i−1 is the reproduced duration of trial i-1.

Wi−1 is the weight the observer assigns to the trial n-1 response when estimating the current

duration. Following Bayes rule to integrate the two samples dictating the current percept, the

observer specifies Wi−1 as

Wi� 1 ¼
1=s2

i� 1

1=s2
i þ 1=s2

i� 1

¼
s2
i

s2
i þ s

2
i� 1

ð8Þ

where σ is the variance of the estimate. The weight is influenced by the distance between the

two stimuli,

Wi� 1 ¼
s2
i

s2
i þ s

2
i� 1
þ ðts;i � ts;i� 1Þ

2
ð9Þ

The variance is assumed to follow a power law.

s ¼ Kts
a ð10Þ

Assuming that time perception follows a scalar rule, α = 1. K is a free parameter regulating

the behavior of the model.

Dual Prior model (DP)

We combined the Local-Only and Global-Only models to create a Dual Prior model. It con-

tained two Bayesian processes. For the first integration, the observer integrates the current

stimulus (ts) with the prior π(ts) to get an estimation te0, following Global-Only model (Eqs

[4]–[7]). The second integration estimates te,i based on tr,i−1, te,i0 and te,i−1
0 following the Local-
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Only model. The Formulas [7] and [9] are rewritten as

te;i ¼ ð1 � Wi� 1Þte;i
0
þWi� 1tr;i� 1 ð11Þ

Wi� 1 ¼
s2
i

s2
i þ s

2
i� 1
þ ðte;i 0 � te;i� 1

0Þ
2

ð12Þ

Duel Prior Short-term Memory model (DPSM)

In the DP model, we assume the local prior is determined by the 1-back reproduction. Here,

we introduce a more general version of this model that assumes the local prior is decided by

short-term memory. Specifically, the local prior (tprior) is updated after each reproduction fol-

lowing a Kalman-filter:

tprior;iþ1 ¼ ltr;i þ ð1 � lÞtprior;i ð13Þ

where l is the learning rate that decides how fast the prior is updated. Eq [7] can be rewrite as

te;i ¼ ð1 � Wi� 1Þts;i þWi� 1tprior;i ð14Þ

Bayes Updating model (BU)

We also considered two unitary process models in which a global prior is updated in a

dynamic manner. For the Bayes Updating model, the prior is updated following Bayes rule

after each observation. Since the prior and likelihood are Gaussian, this model can be

expressed as a Kalman filter. On each trial, the estimated duration (te) is a weighted sum of to

and the duration of the stimulus (ts).

te ¼ ð1 � wÞ∗to þ w∗ts ð15Þ

where the weight w is determined by the sensory noise and variance of the prior. As such, as

w increases, the weight given to the prior will increase (i.e., attraction to central tendency).

Participants make a motor response based on te with Gaussian motor noise (see Eq [5]).

Given that Experiment 2 showed that serial dependence is primarily induced by the repro-

duction component rather than the perceptual component, we assumed the prior is updated

according to tr. After the motor response, t0 is updated based on tr following another Kal-

man filter:

t0o ¼ ð1 � kÞ∗to þ k∗tr ð16Þ

where t0o is the new reference point for the next trial, and k represents the learning rate. To

address the scalar property of timing noise (Weber law), tr, ts, te, and to are taken to be the

log value of the respective durations. Note, that an alternative version of this model could

have the observer directly use the posterior as a new prior (what is known as a fully iterative

model). However, as with the Local-Only model, a fully iterative model will largely overesti-

mate serial dependence given a reasonable central tendency effect.

Mixed-Gaussian Updating model (MGU)

In a second unitary model, the prior is represented as a Gaussian mixture model. This model

is identical to the Global-Only model (Eqs [1–5]) except that the prior is updated after each

trial to generate a better estimate of the temporal context. We applied a simple updating rule

here, in which the observer adds a normal distribution centered at tr with a standard deviation
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of vp to the old test set. The posterior is then appropriately normalized:

p0 tsð Þ ¼
pðtsÞ þ r∗Nðtsjtr; vpÞR
½pðtsÞ þ r∗Nðtsjtr; vpÞ�dts

ð17Þ

where π0(ts) is the new test set, and r is the learning rate.

Simulation procedure

Simulations of each model were conducted to evaluate the results of Experiment 1. The data

from 100 pseudo-participants were generated for each simulation. To determine the values of

the free parameters for the simulations, we referred to a previous study that used a similar

design to that employed here and evaluated the results with the BLS model, or what we refer to

as the Global-Only model [6]. Based on their results, we set np = 0.10 and nm = 0.06 for the

Global-Only, MGU, and DP models. Other parameters were determined to make the ampli-

tude of the serial dependence function roughly similar to the behavioral results. Specifically,

we set w = 0.7 and k = 0.3 for the BU model, the learning rate r = 0.3 for the MGU model, and

K = 0.06 for the Local-Only and DP models. We designed Experiments 3 and 4 to focus on the

MGU and DP models, the two models that produce both central tendency and non-linear

serial dependence effects. For simulations of the short conditions, the step between every two

adjacent stimuli was the same as what was used in the other experiments (40 ms). For simula-

tions of the medium and the long conditions, the step size was set to a smaller value (70 ms)

than used in the experiments to improve resolution. The parameters np and nm were fixed at

the values used in the previous simulations, while a series of r and K values were tested.

Supporting information

S1 Fig. Central tendency of the reproduced duration as predicted by the MGU model in all

experiments. (a-e) Reproduced duration is plotted as a function of target duration for Experi-

ments 1, 3, & 4. The shaded area indicates S.E. The median slope ± S.E. is reported on each fig-

ure. (f) The predicated slopes for the central tendency of the MGU model provide a good fit to

the data. The dots and error bars indicate median slope ± S.E.

(TIF)

S2 Fig. Histogram of the difference between the previous target duration (Sn-1) and the

current target duration (Sn). For individual participants, there are few trials with a large dif-

ference between stimuli, especially for experiment 1 and the short-900 condition. As such, the

DoG may not provide a good fit when used to estimate serial dependence curves at the individ-

ual level.

(TIF)

S3 Fig. Deviation index functions for Experiment 2. (a) A prominent DoG curve can be seen

for the n-1 data when trial n-1 was a Go trial. (b) This curve is markedly attenuated when trial

n-1 was a no-Go trial. (c) A small DoG curve is evident for the n-2 trial when n-1 was a No-Go

trail and n-2 is a Go trial. The thick dashed line is the best-fitted DoG curve. Shaded areas indi-

cate standard error.

(TIF)

S4 Fig. A local-only model cannot explain the results in Exp 1 across a range of parameter

values. (a) Predicted relationship between central tendency and serial dependence for the

local-only models. The depicted function shows the prediction of the model as the value of K

is manipulated. The gray bar indicates the data from Exp 1, with the width of the bars

PLOS COMPUTATIONAL BIOLOGY A unitary adaptation mechanism in time perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011116 May 5, 2023 20 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011116.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011116.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011116.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011116.s004
https://doi.org/10.1371/journal.pcbi.1011116


indicating SE. (Note that the SE of half amplitude is very small). (b-c) Prediction of the central

tendency and serial dependence effects for models with a K value of either 0.31 or 0.06. The

model cannot capture both effects simultaneously.

(TIF)

S5 Fig. A dual-prior model with short-term memory (DPSM) fails to predict the non-lin-

ear serial dependence. (a) Serial dependence function of the 1-back trial in the medium (top

row) and long (bottom row) conditions of Exp 3. Thick line indicates the best-fitted DoG func-

tion. (b-c) 1-back serial dependence function predicted by the DPSM model with different val-

ues of the L (b) and k (c) parameters. In all simulations, the DPSM fails to generate a DoG-

shaped serial dependence function for the 1-back trial. (d) Serial dependence function of the

2-back trial. Thick line indicates the best-fitted DoG function. (e-f) 2-back serial dependence

function predicted by the MGU and DPSM models. The DPSM model predicts a monotonic,

near-linear serial dependence function for the 2-back trial. Error bars indicate standard error.

(TIF)

S6 Fig. Instantaneous slope of the fitted DoG functions for trials n-1, n-2, and n-3, and future

(n+1) trials in the short-900 (a) and bimodal conditions (b). A significant serial dependence

effect can be observed from the n-2 trial in the bimodal condition rather than the short-900

condition in experiment 4. Dots indicate individual data points and error bars represent stan-

dard error. The p-values are based on a test of whether the observed values differ from zero.

(TIF)
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