
 1 

A cerebellar population coding model for sensorimotor learning 

Tianhe Wang*, Richard Ivry 

Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 

California 

 

Corresponding authors (*):  

Tianhe Wang (tianhewang@berkeley.edu) 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2023. ; https://doi.org/10.1101/2023.07.04.547720doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 1 

The cerebellum plays a critical role in sensorimotor learning, and in particular using error information to 2 

keep the sensorimotor system well-calibrated. Here we present a population-coding model of how the 3 

cerebellum compensates for motor errors. The model consists of a two-layer network, one corresponding 4 

to the cerebellar cortex and the other to the deep cerebellum nuclei, where the units within each layer 5 

are tuned to two features, the direction of the movement and the direction of the error. We evaluated 6 

our model through a series of behavioral experiments that test sensorimotor adaptation across a wide 7 

range of perturbation schedules. The model successfully accounts for interference from prior learning, 8 

the effects of error uncertainties, and learning in response to perturbations that vary across different time 9 

scales. Importantly, the model does not require any modulation of the parameters or context-dependent 10 

processes during adaptation. Our results provide a novel framework to understand how context and 11 

environmental uncertainty modulate cerebellar-dependent learning.  12 
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Introduction 13 

Humans are incredibly flexible in how we adapt our motor behavior across variable environments. We 14 

readily compensate for the added weight of a heavy winter coat when reaching for an object or adjust the 15 

force required as we sip on our morning coffee. The cerebellum is recognized as playing a key role in this 16 

adaptation process1,2, utilizing errors as teaching signals to improve subsequent, similar movements3,4. 17 

This form of learning operates implicitly, automatically recalibrating the sensorimotor system without the 18 

need for awareness or drawing on cognitive resources5–7. The current paper aims to understand how this 19 

process is modified by context and environmental uncertainty. 20 

 21 

Previous research has suggested that cerebellum-dependent learning is cognitively impenetrable, 22 

responding to error in a rigid manner even when the correction fails to improve task performance5,8–11. 23 

Moreover, unlike many learning processes, adaptation is not sensitive to the statistical properties of the 24 

perturbations12,13. However, this view of a rigid, inflexible system has been challenged by recent evidence 25 

showing that implicit adaptation is modulated by experience14. For instance, when participants are 26 

exposed to a previously experienced perturbation, the rate of relearning is slower than had been originally 27 

observed15. Not only does this result suggest a degree of flexibility in adaptation, but this context effect is 28 

opposite what is typically observed in studies of relearning: Across a broad range of task domains, 29 

relearning is typically faster16–18. This phenomenon, known as savings, is thought to reflect the reactivation 30 

of a residual memory. The rigidity and atypical effect of experience point to the need for considering the 31 

unique properties of the cerebellum in understanding how the processes of adaptation are modulated.  32 

 33 

The basic principles of cerebellar-dependent error-based learning have been captured by the classic Marr-34 

Albus model2,19. Purkinje cells (PC), the primary integrative unit in cerebellar cortex receive two types of 35 

input (Fig 1a). One source originates in the pontine nuclei which project to the granule cells of the 36 
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cerebellum. The axons of these granule cells, the parallel fibers, provide the primary input to PCs. This 37 

pathway provides contextual information, and in the domain of movement, is hypothesized to convey an 38 

efference copy of the motor command. PCs operate as a forward model, utilizing this input to predict the 39 

sensory consequences of the motor command 20,21. The second source originates in the inferior olive. Here, 40 

the axons, the climbing fibers, provide a teaching signal, indicating a mismatch between the predicted and 41 

expected sensory feedback, that is used to update the forward model. Physiologically, activation of the 42 

climbing fibers induces long-term depression (LTD) of parallel fiber-PC (PF-PC) synapses, reducing the 43 

efficacy of similar input on PC activity. 44 

 45 

Here, we expand on the Marr-Albus theory by incorporating some recent developments in cerebellar 46 

physiology to describe how the cerebellum is modulated by experience and environmental variability. 47 

First, recent studies have revealed a fundamental property of PCs: these cells are not only tuned to 48 

movement direction but also to the direction of error relative to that movement (Fig 1b)22–24. Second, 49 

learning is not confined to the cerebellar cortex; it also takes place in the deep cerebellar nuclei (DCN)25–50 

28. By linking these two layers by positing connections between units that share similar tuning profiles, we 51 

develop a cerebellar population coding (CPC) model that can capture how different contextual factors 52 

affect sensorimotor adaptation.  53 

 54 

To validate our model, we conducted a series of behavioral experiments employing various perturbation 55 

schedules. Specifically, we examined the effect of past experience, error uncertainty, error size, and 56 

variation in temporal dynamics in evaluating our model. Where relevant, we consider two alternative 57 

models that have been proposed to elucidate how context and environmental uncertainty modulate 58 

sensorimotor learning. One model is centered on the idea that the motor system develops context-specific 59 

motor repertoires and determines which repertoires to express based on contextual cues29–31. The other 60 
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model proposes that the learning rate of the adaptation system is modulated based on error history22. 61 

Our population-coding model provides the best fit in all the behavioral tests, even without positing 62 

context-dependent learning or having the capability to modulate learning parameters. As such, these 63 

results point to a parsimonious model of how the cerebellum supports sensorimotor adaptation across a 64 

broad range of contexts. 65 

 66 

Results 67 

Cerebellar Population Coding (CPC) model 68 

The Marr-Albus model outlines how the cerebellar cortex can be viewed as a general error-based learning 69 

system, with an emphasis on how the anatomy and physiology are ideal for learning arbitrary 70 

associations2,32. The model has inspired many empirical tests spanning a range of sensorimotor 71 

behaviors26,33–35. This body of work has generally focused on the acquisition of individual behaviors in a 72 

constant environment, for example, testing visuomotor adaptation in response to a fixed perturbation. 73 

Here we extend the model, focusing on how learning is modulated when the environment is variable. A 74 

foundational idea for our model is inspired by a recent work showing how PCs in the oculomotor 75 

cerebellar cortex are simultaneously tuned to two kinds of information22,23. The first is movement 76 

direction, similar to that observed in many motor regions of the cortex and subcortex. The second is the 77 

direction of a visual error that arises during that movement (Fig 1b, c). Tuning in terms of movement 78 

direction is reflected in the simple spike activity of the Purkinje cells and tuning in terms of movement 79 

error is reflected in the complex spike activity of these cells. Importantly, because the two tuning profiles 80 

are in opposite directions, error-related activation will result in a change in the output to reduce that error. 81 

22–24   82 

 83 
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In the present study, we examine the implications of these tuning properties on cerebellar dependent 84 

learning. To incorporate PC tuning into a learning model, we formulize the teaching signal, the complex 85 

spike (CS) activity of a PC with a preferred direction of 𝑖	(0≤ 𝑖 < π) in response to a movement error e (Fig 86 

1d) as: 87 

[1]	𝐶𝑆!" = 𝑉𝑀(θ# , 𝑖, 𝑠)F(ρ#) 88 

where 𝑉𝑀(	𝑖, 𝑠) is the probability density function of a simplified circular (von Mises) distribution with a 89 

mean of 𝑖 and standard deviation of 𝑠. θ# and ρ# refer to the direction and the size of e, respectively, and 90 

𝑛 is the trial number. F is a non-linear function to capture the well-established fact that learning rate does 91 

not scale with error size36,37. Since this non-linear relationship is not a question focused by the current 92 

study and we use a fix error size (Except Exp 6 & 8), F(ρ#) was set as a 1. Following the Marr-Albus model, 93 

the occurrence of a CS suppresses the strength of the parallel fiber input synapse (𝑤) through long-term 94 

depression (LTD): 95 

[2]	𝑤!"$% = −𝑙𝐶𝑆!" + 𝑓(𝑤& −𝑤!") + 𝑤!" 96 

where 𝑙  (𝑙 > 0) and 𝑓  (0 < 𝑓 < 1) are the learning and forgetting rates, respectively, and 𝑤&  is the 97 

baseline synaptic strength. Since the level of single spike (SS) activity will be greatest for cells coding a 98 

movement direction opposite to the error, the modulation of synaptic strength will drive the next 99 

movement in a direction that corrects for the observed error. 100 

 101 

The preceding paragraph describes how parallel fiber synapses onto PCs are modified. A second 102 

prominent site of plasticity is at deep cerebellar nuclei25,38. Lesion studies of eyeblink conditioning provide 103 

one line of evidence indicating that some aspect of consolidated learning is centered in the DCN.  Ablation 104 

of the cerebellar cortex can completely block de novo cerebellar-dependent learning26,39. However, once 105 

the learned behavior is established, it can persist after lesions to the cerebellar cortex even though the 106 

kinematics are likely to be disrupted40,41.  107 
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 108 

It has been hypothesized that this dissociation arises from a dual-effect of pontine projections to the 109 

cerebellum42. As described above, one pathway is via the polysynaptic projection to the cerebellar cortex 110 

(mossy fiber to parallel fiber to PC).  The other is a direct, excitatory projection of the mossy fibers to the 111 

DCN.  Importantly, PC and DCN neurons are organized such that they share the same tuning direction for 112 

movement43. We posit that learning at the DCN is gated by learning at the cerebellar cortex. Specifically, 113 

LTD at parallel fiber-PC (PF-PC) synapses will reduce inhibitory PC input to the DCN, resulting in long term 114 

potentiation (LTP) at the mossy fiber-DCN synapses (𝑚) (Fig 1e): 115 

[3]	𝑚!
"$% = (𝑤& −𝑤!")ß(𝑚'() −𝑚!

") + 𝛼(𝑚& −𝑚!
") + 𝑚!

" 116 

where	ß and 𝛼 are the learning rate and the forgetting rate of the DCN input synapse, respectively.  The 117 

parameters 𝑚&	and 𝑚'()  represent baseline and maximal synaptic strength, respectively. The latter 118 

constraint is based on empirical results showing that implicit adaptation saturates independent of the 119 

error size.   120 

 121 

Considering the two sites of plasticity, DCN activity on a repeated trial following a movement error can be 122 

formalized as:  123 

[4]	𝐷𝐶𝑁!"$% ∝ 𝑚!
"$% − g	𝑤!"$% 124 

 125 

where g	 is a scale factor. The output of the population of DCN neurons will correspond to the change in 126 

movement direction in response to an error, a signal that can be used to adjust the movement. This can 127 

be expressed as: (Fig 1f): 128 

[5]	𝒉"$% = −𝜀G𝒗!𝐷𝐶𝑁!"$%

!

 129 

where 𝒉" is a vector representing the hand angle on trial n, 𝒗!  is a vector representing the tuning 130 

direction of unit 𝑖, and 𝜀 is a scale factor to transfer the neural activity into hand angle. 131 
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 132 

Putting together Eqs 1-5, we see that an error e will decrease parallel fiber input to PC (𝑤) and increase 133 

mossy fiber input to DCN (𝑚) (Fig 1d & e). Correspondingly, the net output of the cerebellum will provide 134 

a signal of the required change in movement direction to correct for the error (Fig 1f). 135 

 136 

 137 

Fig. 1 Illustration of the CPC model. a) Structure of the cerebellar circuit incorporated in the CPC model. 138 

b) Each Gaussian-shaped curve represents the tuning function of a single Purkinje cell (PC) based on that 139 

cell’s preferred error direction. For the simulations, we used 1000 units with preferred directions that 140 

covered 0-π in a uniform manner. c) Illustration of visual errors, with the direction of the error specified 141 

in polar coordinates. d-e) Model-generated adaptation in the cerebellar cortex (d) and deep cerebellar nuclei 142 
(DCN) (e). After experiencing an error in 0 direction, PC’s with a preferred direction close to 0 will have high 143 
probability of generating a complex spike (CS) (d, left) which will result in long-term depression (LTD) for active 144 
synapses from granule cell inputs to that PC (d, right). During the preparation of the next movement, the 145 
strength of the input from the parallel fibers (PF) will decrease due LTD, attenuating the SS activity of the PC.  146 
Attenuation of PC output will result in long-term potentiation (LTP) at the mossy fiber (MF) input synapse to 147 
DCN (e, left). DCN activation is determined by the excitatory input from the MF and the inhibitory signal from 148 
the PC (e, right). The color of the frames corresponds to the color of structure in the Panel a. f) DCN activation 149 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2023. ; https://doi.org/10.1101/2023.07.04.547720doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547720
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

plotted in a polar coordinate. Activation across the population of cells results in a vector (purple arrow) 150 
indicating the change in hand angle (Δ hand). Note that the vector points in the same direction as the error (c, 151 
left), and thus serves to compensate for the error. 152 
 153 

Clamp rotation task 154 

In the following sections, we examine the CPC model, evaluating how well it captures a range of 155 

phenomena observed during sensorimotor adaptation in various environments and under various training 156 

schedules. In the empirical studies, we use a visuomotor rotation task in which the visual feedback during 157 

a reaching task is limited to a cursor. To isolate cerebellar-dependent sensorimotor adaptation, we used 158 

task-irrelevant clamped feedback in which the radial position of the cursor is locked to the hand, but the 159 

angular position is fixed, shifted by a constant angle relative to the target (clamped)5,42–44.  As such, the 160 

angular position of the cursor is independent of the position of the participant’s hand (Fig. 2a-b) and this 161 

“error” remains constant across the perturbation phase of the experiment. Participants are fully aware of 162 

the manipulation and instructed to ignore the feedback.  163 

 164 

In Exp 1, we used a clamp with a fixed angle of 30° during a 100-trial training phase followed by a 60-trial 165 

no-feedback “washout” phase (Fig 2c). As with prior studies using clamped feedback5,44–46, we observed 166 

prominent adaptation. When the perturbation was present, the reach angle shifted in the opposite 167 

direction of the clamp and became relatively asymptotic by around the 30th reach. When the perturbation 168 

was removed and feedback eliminated, the hand angle slowly shifted back towards the baseline direction. 169 

These behavioral changes occur outside awareness47. Clamp-induced adaptation has all of the hallmarks 170 

of implicit adaptation and, as with other forms of this type of learning, is dependent on the integrity of 171 

the cerebellum5,47. 172 

 173 
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The data from Exp 1 were used to determine the learning rate and forgetting rate for plasticity at the DCN, 174 

along with the scaling factor. The other two parameters of the model, the learning and forgetting rates 175 

for plasticity at the PCs, were empirically estimated in Exp 6 (see below).  These parameters were fixed in 176 

the model simulations for the other experiments.   177 

 178 

 179 

 180 

Fig. 2 Cerebellar population coding captures learning, forgetting, and anterograde interference during 181 
implicit adaptation. a) For online testing, stimuli are presented on the participant’s laptop computer and 182 
movements are made on the trackpad. B) For clamped feedback, the angular position of the cursor is rotated 183 
by 30° with respect to the target, regardless of the heading direction of the hand. For a 30° clockwise clamp, 184 
the error direction remains at 0 on all trials. Similarly, for a -30° rotation (counterclockwise), the error direction 185 
would be invariant at π. C) Perturbation schedule (top) and results (bottom) for Exp 1. Time course of hand 186 
angle is shown in light violet. The CPC model provides a good fit in both the training and no-feedback washout 187 
phases. The state-space (SS) model using parameters fit from the training phase overestimates the forgetting 188 
rate in the washout phase. d) In Exp 2, half washout phase entails a 50/50 mix of clamp and no-feedback trials. 189 
Consistent with the CPC model, hand angle showed a small reduction whereas the state-space model predicts 190 
the hand angle will be reduced by 50%. e) We reversed the clamp direction during the training section of Exp 191 
3. The behavioral results match the prediction of the CPC. f) Memory of the original perturbation (top row) 192 
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persists in the anti-clamp training phase, indicated by the activation of neurons tuned to 0 in the bottom row. 193 
This residual memory causes anterograde interference. Note that model all of the parameters were fixed in 194 
generating the predictions for Exps 2-3. Shaded area in c, d, e indicates standard error.  195 
 196 

Failure of state-space models to provide parsimonious account of learning and forgetting during 197 

adaptation. 198 

The CPC model provides an excellent fit to the learning function, including the washout period (Fig 2c). 199 

We recognize that this is not surprising given the number of parameters and relatively simple 200 

manipulation. However, this result stands in contrast to that obtained when these data are fitted with the 201 

most widely used sensorimotor adaptation model, the state-space model44,48. A key feature of the state-202 

space model is that adaptation reaches an asymptote when the trial-by-trial effects of learning and 203 

forgetting cancel each other out (see Methods). While this will produce asymptotic learning, the state 204 

space model will predict a washout function that is much faster than empirically observed. The CPC model 205 

captures performance during both the acquisition and washout phases because the model includes a 206 

parameter specifying the upper boundary of adaptation, 𝑚'() , assumed to reflect a limitation in 207 

neuroplasticity in the DCN. 208 

 209 

To further compare the two models, we conducted a second experiment in which the post-training phase 210 

alternated between no-feedback and clamp trials (Exp 2, referred to as half-washout, Fig 2d). The state-211 

space model predicts that the asymptote will drop to 50% because learning will only occur on 50% of the 212 

trials (feedback trials), a prediction that holds even in state-space models that posit learning at multiple 213 

time scales18,49. However, the asymptote showed only a slight decrease when clamped feedback was 214 

presented on 50% of the trials, consistent with the predictions of the CPC model (Fig 2d). These results 215 

highlight a major limitation in using a state-space model to capture implicit adaptation even when there 216 

is no manipulation of the learning context.  217 
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 218 

Anterograde interference  219 

Having shown that the CPC model can capture the basic features of sensorimotor adaptation, we now 220 

turn to phenomena in which adaptation is influenced by the experimental context. For units aligned with 221 

a specific error, synaptic strength undergoes rapid changes due to the potent impact of complex spikes. 222 

However, the recovery or resetting of these synapses during washout follows a relatively slow decay. As 223 

such, at the population level, the net output of the system will be influenced by the persistent state of 224 

units that were tuned to a recent perturbation.  For example, due to this persistent state, the rate of 225 

adaptation should be attenuated when the system is presented with a perturbation in the opposite 226 

direction of a recently experienced perturbation. This effect is known as anterograde interference and has 227 

previously been shown to occur during implicit adaptation50–54.  228 

 229 

To examine whether our model can quantitively predict anterograde interference using the parameters 230 

measured from previous experiments, we used a task in which the sign of the clamp was immediately 231 

reversed after an initial training block (e.g., 30° followed by -30°, Exp 3, see Fig 2e). The results showed 232 

that the rate of adaptation was slower in response to the reversed clamp compared to the original clamp. 233 

Indeed, the degree of attenuation closely matched the CPC model's prediction (Fig 2f). 234 

 235 

Attenuation in relearning and no spontaneous recovery 236 

Anterograde interference has typically been explained by positing context-dependent learning 237 

mechanisms30,55,56. For example, the contextual inference (COIN) model assumes that the motor system 238 

forms separate memories for different contexts and chooses which memory to use based on the inferred 239 

context29. To account for the results of Exp 3, COIN would first build a memory for the 30° perturbation 240 

and then a second, distinct memory for the -30° perturbation. Anterograde interference would arise 241 
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because the introduction of the -30° perturbation would lead to some degree of recall of the response to 242 

the initial perturbation. Over time, this would shift to a bias to recall the response to the second memory.  243 

 244 

As shown in the previous section, the CPC model does not posit distinct memories for different 245 

perturbations; rather anterograde interference emerges from the dynamics of the CPC model. While CPC 246 

and COIN make similar predictions about anterograde interference, the two models make differential 247 

predictions on another memory recall phenomenon, spontaneous recovery. Spontaneous recovery refers 248 

to reappearance of a previously extinguished response, even when error information has not been re-249 

introduced (e.g., no feedback phase). A paradigmatic design to elicit spontaneous recovery in 250 

sensorimotor learning studies would be to train participants with a perturbation in one direction, 251 

extinguish the adapted behavior by shifting the perturbation in the opposite direction, and then testing 252 

movements without feedback (Fig 3a). Spontaneous recovery refers to the fact that the initial movements 253 

during the no-feedback phase are in the opposite direction of the initial perturbation (Fig 3c left). By the 254 

COIN model, spontaneous recovery occurs because of recall of the original context during the no-feedback 255 

phase. In contrast, the CPC model predicts that spontaneous recovery will not occur when learning is 256 

restricted to the implicit system since the model does not have a mechanism for context-dependent 257 

memory (Fig 3c right).  258 

 259 

In Exp 4, participants were trained with a 30° clamp in one direction for 100 trials and then presented with 260 

the opposite clamp for 15 trials (Fig 3a). Pilot testing had shown that this was sufficient to extinguish the 261 

shift in hand angle observed to the initial perturbation. The critical test was the subsequent 30-trials no-262 

feedback block. At odds with the prediction of COIN, we failed to observe spontaneous recovery (Fig 3c, 263 

see Fig S1b).  264 

 265 
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A second point of contrast between the CPC model and context-dependent models such as COIN can be 266 

obtained by re-introducing the initial perturbation after the no-feedback washout (Fig 3a, relearning). The 267 

COIN model predicts that relearning should be faster (i.e., exhibit savings) because the system has stored 268 

a memory of the initial perturbation. The CPC model predicts that exposure to the opposite error during 269 

the washout phase will induce anterograde interference; as such, relearning will now be attenuated. Again, 270 

the results support the CPC model: Adaptation during the re-exposure block was slower compared to 271 

initial learning (Fig 3e; Fig S1a).  272 

 273 

These results suggest that, for implicit adaptation, context effects such as anterograde interference are 274 

an emergent property of the system’s inherent dynamics.  A core feature of the CPC model is the absence 275 

of context-dependent memory, which we assume, is important for other forms of sensorimotor learning, 276 

such as those associated with action selection31.  277 

 278 

 279 

Fig. 3 Context as an emergent property of the CPC model. a) Exp 4 perturbation schedule. The learning and 280 
relearning phases are separated by an anti-clamp washout and no feedback phase to examine spontaneous 281 
recovery. The original perturbation is reintroduced in the second learning phase to test for savings. b) The COIN 282 
model predicts spontaneous recovery and savings; the CPC model predicts no spontaneous recovery and 283 
attenuation upon relearning. Note that, for visualization, the data from the relearning phase are plotted on top 284 
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of the original learning phase. c) Empirical results match both predictions of the CPC model. Shaded area in c 285 
indicates standard error. d) In Exp 5, the learning and relearning phases are separated by a variable phase in 286 
which the probability of a perturbation switch is manipulated between participants. e) The MoE model predicts 287 
that during relearning, the learning rate will be modulated by the prior switching rate (i.e., perturbation 288 
variability) whereas the CPC model predicts that the learning rate will not be modulated by switching rate. f) 289 
Empirical results are in accord with CPC model, showing attenuation and insensitivity to switching rate.  290 
 291 

Cerebellum-dependent learning is not sensitive to the consistency of errors. 292 

Context-dependent models confer a degree of flexibility on a learning process; in the case of COIN, the 293 

system is capable of storing multiple context-specific memories. An alternative form of flexibility is to 294 

allow the parameters of the model to change in response to context. For example, the Memory of Error 295 

(MoE) model assumes that the sensitivity of the system is modulated by error history57. Specifically, 296 

learning rate increases when the experienced errors are consistent and decreases when the experienced 297 

errors are inconsistent. Such a property is functionally useful in that the system will learn faster when the 298 

environment is relatively stable.  299 

 300 

The CPC model does not provide such flexibility. Rather, we posit that the model parameters are fixed and 301 

experience-dependent changes in the response to an error arise because previous errors have transiently 302 

altered the state of the system. To compare the MoE and CPC models, we tested the response to a clamp 303 

with a fixed sign (e.g., 30°) before and after a block in which the sign of the clamp varied, with the 304 

switching probability set to 12.5%, 50%, or 90% (Fig 3d). The MoE predicts that the rate of relearning will 305 

be modulated by the switching frequency (Fig 3e left). However, consistent with the predictions of the 306 

CPC model, the rate of relearning was independent of the switching frequency (Fig 3e-f). Interestingly, 307 

relearning was markedly slower than the original learning (Fig S1c). This attenuation is another 308 

manifestation of anterograde interference resulting from the opposite errors experienced in the variable-309 

clamp block.  310 
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 311 

These phenomenon have been previously explained as reflecting the operation of multiple processes that 312 

operate at different learning rates.42,58 However, by the CPC model different learning rates can be an 313 

epiphenomenon of population coding rather than reflect the joint operation of multiple learning 314 

mechanisms (Fig S2). Cells with a preferred direction centered on the error direction will display relatively 315 

fast learning and quickly saturate. In contrast, cells with a preferred direction slightly misaligned with the 316 

error direction will learn slower due to the weaker climbing fiber input and take longer to saturate. The 317 

behavior change in movement direction is dictated by all of the units. 318 

 319 

The CPC model provides a novel account of another phenomenon described in the adaptation literature, 320 

namely that behavior reflects the summed activity of multiple learning processes that operate at different 321 

rates. 42,58 An analysis of the CPC model shows that, in some cases, this can be an epiphenomenon of 322 

population coding rather than reflect the joint operation of multiple learning mechanism (Fig S2). Cells 323 

with a preferred direction aligned with the error will display faster learning and quickly saturate. In 324 

contrast, cells with a preferred direction slightly misaligned with the error direction will learn slower due 325 

to the weaker climbing fiber input and take longer to saturate. The net change in behavior is a composition 326 

of all activated units in the population.   327 

 328 

Labile and stable processes in cerebellum-dependent learning 329 

The preceding sections have focused on one critical feature of the CPC model, the population effects that 330 

emerge when individual units code both movement and error direction. We now turn to the other key 331 

feature of the model, that cerebellar-dependent learning involves an interaction between plasticity 332 

effects occurring in the cerebellar cortex and deep cerebellar nuclei, with the former gating the learning 333 

rate of the latter. 334 
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 335 

Our starting point here comes from an adaptation protocol in which the sign and size of the perturbation 336 

randomly varies across trials. Consistent with previous studies5,37,59, the response to clamped feedback in 337 

this design (Exp 6) scaled for perturbations up to around 30°, and then saturated or even slightly 338 

decreased for larger perturbations (Fig 4a). Importantly, when we empirically estimate forgetting (see 339 

Methods), the retention rate is close to 0.5, indicating that about half of the learning from the previous 340 

trial has been forgotten. This value stands in marked contrast with the empirically estimated retention 341 

rate from designs in which the perturbation is fixed (Exp 1, 0.98). This difference is also found in previous 342 

studies using either variable perturbations in a trial-by-trial design36,37,60 or a fixed perturbation in a block 343 

design45 (Fig 4b,c). 344 

 345 

The discrepancy in forgetting rates for blocked vs variable designs could be taken to indicate that 346 

perturbation variability influences adaptation. However, given the results of Exp 5 (see also 61), we 347 

consider an alternative hypothesis, namely that implicit adaptation entails at least two processes that 348 

operate on different timescales18,58. One process is labile, driving rapid changes that are weakly retained. 349 

The other process is stable, producing changes at a relatively slow rate but with good retention (Fig 4h, 350 

Fig S3).  351 

   352 
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 353 

 354 

Fig. 4 Operation of labile and stable processes in cerebellum-dependent adaptation. a) Trial-by-trial change 355 
of hand angle (Δhand) as a function of the perturbation size on trial n-1 (1-back), n-2 (2-back), and n-3 (3-back) 356 
of Exp 6.  b) Left: Δhand during variable phase of Exp 5 for the 50% switching condition. Right: The two-layer 357 
CPC model can account for the large change in hand angle observed in trial-by-trial designs whereas a single-358 
layer model predicts a negligible change when the perturbation direction is varied. The forgetting rate can be 359 
empirically measured as the ratio between the Δhand of the 1-back and 2-back trials. c) Retention rate in the 360 
variable perturbation conditions is close to 0.50 whereas the retention rate in response to a fixed perturbation 361 
is close to 0.99. Re-analysis of data from Wei: 37; Tsay-1: Exp 2 60; Tsay-2: Exp 3 62, Avraham: Exp1 45. In all 362 
situations (trial-by-trial and blocked), we only included experiments tha used a single target. d-e) Simulated 363 
time course of the stable and labile processes in Exp 1 (e) and Exp 2 (f), along with their summed effect on 364 
behavior (CPC), and behavioral results. f) A single-layer model fails to account for the rapid forgetting observed 365 
at the start of the washout phase in Exp 1. g) The large Δhand in the half washout phase of Exp 2 (left) can only 366 
be accounted for by the two-layer CPC model (right). h) The labile process is hypothesized to produce LTD at 367 
the parallel fiber-PC synapse; the stable process is hypothesized to produce LTP at the mossy fiber-DCN synapse. 368 
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i) As predicted by the two-process CPC model, when exposed to a variable perturbation, the Δhand is larger in 369 
early training compared to late training. Shaded areas and error bars indicate standard error.  370 
 371 
 372 

The dual operations of stable and labile learning processes is evident in other features of our data. In Exp 373 

1, the retention rate changed over the course of the no-feedback block (Fig 4d), with large forgetting over 374 

the initial washout trials and much slower forgetting over the remainder of the block (also see Exp7, Fig 375 

S4). Fitting the results requires the joint operation of two forgetting rates operating at different temporal 376 

scales (Fig 4e). Moreover, in the half-washout condition of Exp 2, there is a considerable drop in hand 377 

angle after each no-feedback trial and a considerable increase after each clamp trial with a net result that 378 

the asymptote remains largely unchanged (Fig 4f & g). The large trial-by-trial change of hand angle near 379 

asymptote clearly suggests the operation of a labile process on top of a saturated stable process. 380 

Furthermore, with a variable perturbation, the learning rate is faster at the start of learning and decreases 381 

over the course of training (Fig 4i). Consistent with the CPC model, early learning reflects the operation of 382 

both the labile and stable processes, whereas during late learning, the stable process is saturated and 383 

performance changes are driven solely by the labile process (Fig S5).  384 

 385 

Learning of the stable process is gated by the labile process. 386 

Having seen that a two-process model is required to capture adaptation, we next consider the relationship 387 

between the labile and stable processes. In particular, do they make independent contributions to 388 

adaptation, or do they interact? As outlined in the Introduction, the CPC model proposes a specific form 389 

of interaction, namely that the stable process is gated by the labile process, with the former characterizing 390 

plasticity in the DCN and the latter plasticity in PCs (Fig 4h). This proposition is motivated by anatomical 391 

and physiological considerations: Anatomically, the output of the PCs provides the primary input to the 392 

DCN. Physiologically, learning in the cerebellar cortex occurs over a shorter time scale compared to the 393 
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DCN25,38,42,63,64. Given this two-layered network, we should find that the learning rate in the DCN is scaled 394 

by the change in simple spike activity of the PCs. 395 

 396 

As a first test of this hierarchical organization, we asked whether the stable and labile processes are 397 

modulated in a similar way by perturbation size. Given the hierarchical assumption of the CPC model, we 398 

should be able to measure the learning rate of the labile process with a variable perturbation design (Fig 399 

5a) and use this to predict learning functions in response to fixed perturbations of different size. 400 

Alternatively, if the stable and labile processes are independent, then we should not observe a similar 401 

yoking. We considered two variants of an independent model (Fig 5b), one in which the learning rate of 402 

the stable process is invariant across error size (FIX model) and one in which it is proportional to error size 403 

(LINEAR model). 404 

 405 

Consistent with the CPC model, using the estimates of the labile learning rate from Exp 6 (Fig 5a), we were 406 

able to predict the learning functions in response to an invariant clamp of either 3° or 30° (Exp 8, Fig 5c). 407 

The two alternative models (FIX and LINEAR) fail to account for the data (Fig 5d). Specifically, the learning 408 

curves diverged during the early phase of learning before converging in late learning. When expressed as 409 

the ratio of hand angle in response to the large perturbation relative to the small perturbation, we observe 410 

a function that peaks early before dropping in a gradual manner (Fig 5e). We performed a similar analysis 411 

on other data sets that involved a comparison of different error sizes59 and found a similar pattern.  In 412 

contrast, we obtain a good fit with a model in which the labile process gates the stable process (Fig S6b-413 

c). 414 

 415 
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 416 

Fig. 5 Labile and stable learning rates are modulated in a similar manner by error size. a) The effect of error 417 
size on the labile process measured in Exp 6. For the CPC model, the ratio of the Δhand in a was used to 418 
estimate the learning rate of the stable process for the 3° condition (all other parameters are the same as in 419 
the 30° condition). b) Two alternative models in which the labile and stable processes are independent: In one, 420 
the learning rate of the stable process is invariant (FIX model) and in the other, the learning rate of the 421 

stable process is proportional to error size (LINEAR model). c) The CPC model (green) was able to predict the 422 

learning functions in response to both a small and large fixed perturbation (light violet). d) The FIX and LINEAR 423 

models fail to predict the learning curve in the 3° condition. e) The hand angle ratio for the two error sizes. 424 
Early in learning, the ratio is large and then converges to a value slightly larger than 1. The best fitting model 425 
assumes that the labile and stable processes are modulated in a common manner, a signature of a system in 426 
which one signal gates the other. Shaded area and error bar indicate standard error. 427 
 428 
 429 

In a second test of the gating hypothesis, we manipulated the duration of the inter-trial interval. The trial-430 

by-trial change in hand angle arising from the labile process should decrease with the passage of time (Fig 431 

6a). If this process gates the learning rate of the stable process, increasing the ITI should also decrease the 432 
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learning rate of the stable process (Fig 6b left). Alternatively, if the two processes operate in parallel 433 

(PARALLEL model), the operation of the stable process should not be influenced by variation in ITI (Fig 6b 434 

right).  435 

 436 

To evaluate these predictions, we first used a trial-by-trial design (Exp 9) to measure the change in hand 437 

angle when the ITI was short (0 s) or long (7 s). As predicted the change was attenuated in the 7 s condition 438 

(Fig 6a). We then used a block design with either the short or long ITI (Exp 10). We ignored the first 5 trials 439 

because these would still have a contribution from the labile process. Focusing on trials 6-10, we found 440 

that the learning rate was higher in the short ITI condition, consistent with the prediction of the CPC model 441 

(Fig 6d). Moreover, the long ITI condition showed a smaller retention in early washout but not in late 442 

washout (Fig 6e), supporting the idea of the two learning processes. 443 

 444 

However, the CPC model fails to capture one prominent feature in these data, the convergence of the two 445 

functions at asymptote (Fig 6c & f). The basic CPC predicts that the advantage for the short ITI condition 446 

should hold for the entire experiment, resulting in a lower asymptote for the long ITI condition. To address 447 

this discrepancy, we modified the CPC model (Fig 6g), adding a recurrent suppression pathway from the 448 

DCN to the inferior olive65,66 (RSCPC). This inhibitory signal will reduce the strength of the error signal to 449 

the PCs67. If we assume that the strength of this suppression decays across the ITI, the RSCPC generates 450 

learning functions that provide good fits in both ITI conditions (Fig 6h & i, Fig S7). Importantly, after re-451 

estimating all parameters using this variant of the CPC, we observed negligible effects on the predictions 452 

reported for the other experiments (Fig S8).  453 
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   454 

Fig. 6 The learning rate of the stable process is gated by the labile process. a) Trial-by-trial change in response 455 
to a variable perturbation with a short (Exp 5, p=0.5) or long ITI (Exp 9). b) Predictions of learning functions 456 
under the gating assumption of the CPC model and alternative model in which the two processes operate 457 
independently (PARALLEL). c) Learning functions in Exp 10 using either a short or long ITI.  Consistent with the 458 
CPC model, the difference between the two functions is reduced over time. d) Model predictions and results 459 
from Exp 10 for the learning rate for trials 5-10. The learning rate is higher in the short ITI condition. e) The 460 
retention rate is larger in the initial no-feedback trials in the long ITI condition since the labile process is 461 
weakened by the passage of time. However, the retention rate is similar across the two ITI conditions later 462 
during washout, consistent with the hypothesis that only the stable process remains operative. f) Hand angle 463 
ratio between short ITI and long ITI condition deviates from predictions of both models. The ratio falls between 464 
the two model predictions early in training and is smaller than predicted by both models late in training. g) 465 
Modified RSCPC model includes inhibitory projection from DCN to the IO. This suppresses the error signal 466 
conveyed by the climbing fibers. This suppression is assumed to decay with time, becoming negligible in the 467 
long ITI condition in the RSCPC model. h-i) Predictions of the RSCPC model provide a good fit to the learning 468 
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curve (h) as well as the change in the ratio between the long and short ITI conditions (i) in Exp 10. Shaded area 469 
and error bar indicate standard error. 470 
 471 

Discussion 472 

To support flexible behavior, an organism needs to choose an action appropriate for a given context and 473 

execute a movement to achieve the desired outcome.  Reaching this goal entails the operation of multiple 474 

learning mechanisms. A large body of work has sought to delineate the principles of these learning 475 

processes, with one prominent question centering on how the processes incorporate context and respond 476 

to uncertainty. With respect to the former, context not only helps specify the optimal action in a particular 477 

setting, but makes learning more efficient, providing a basis for both generalization and discrimination55,68. 478 

With respect to the latter, uncertainty, be it in terms of the environment or agent, has been shown to 479 

modulate the rate of learning69,70.  A core challenge for models of learning requires specifying how context 480 

and uncertainty impact each learning mechanism.   481 

 482 

Here we address this question with respect to the cerebellum, a subcortical structure long recognized as 483 

essential for certain types of error-based learning. We focused here on adaptation, the process by which 484 

error information is used to keep the sensorimotor system precisely calibrated in the face of fluctuations 485 

in the environment or state of the agent.  To explore the impact of context and uncertainty on this learning 486 

process, we developed a population-coding model of the cerebellum incorporating two key features: 1)  487 

Each unit throughout the system is tuned to both movement direction and error direction, and 2) learning 488 

occurs at different rates in the cerebellar cortex and deep cerebellar nuclei, with the former characterized 489 

by a fast, labile process and the latter characterized by a slower, stable process.  Our cerebellar population 490 

coding (CPC) model provides a parsimonious account of a diverse range of phenomena typically consider 491 

signatures of context-dependent learning as well as the impact of error consistency. The two-layer 492 
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structure offers new insight into the temporal dynamics of learning. (Table S1 summarizes comparisons 493 

between the CPC models and other models in the field.) 494 

 495 

Context Dependency as an Emergent Property of Population Coding  496 

The CPC model offers a novel explanation for a well-known contextual effect, anterograde interference. 497 

Classic models of this phenomenon focus on how the acquisition of new information is disrupted by the 498 

reactivation of previously learned information71; as such, anterograde interference arises from 499 

competition between different representations that are activated due to their contextual overlap. In 500 

contrast, anterograde interference is an emergent property in the CPC model. Due to the different tuning 501 

properties of neurons in the cerebellar cortex and DCN, the persistent activation of neurons to an error in 502 

one direction will interfere with the response to an error in a different direction.   503 

 504 

Importantly, there is no explicit role of context in the CPC model in the sense that a context does not 505 

trigger the retrieval of its associated response. In this way, the CPC model diverges from classic models in 506 

the behavior that emerges when a previously encountered context is re-experienced. Under such 507 

circumstances, classic models predict savings in relearning given that the context facilitates the retrieval 508 

of the appropriate response. Indeed, this is a key feature of COIN, a model of sensorimotor learning in 509 

which context provides the critical retrieval cue29.  In contrast, the CPC model accounts for the fact that 510 

when a previously experienced perturbation is encountered, implicit adaptation not only fails to show 511 

savings, but actually can show attenuation46. This attenuation in relearning is simply another 512 

manifestation of anterograde interference: The opposite error is experienced during the washout phase 513 

following initial learning and persistent changes in the state of the system interfere with learning when 514 

the perturbation is reintroduced.  Consistent with this hypothesis, no attenuation is observed in relearning 515 
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if the feedback is withheld during an extended washout phase before the second training (Guy 516 

unpublished). 517 

 518 

In a similar manner, we also find that implicit adaptation is insensitive to environmental uncertainty. A 519 

priori, it would seem optimal for a learning system to be responsive to environmental uncertainty69, 520 

increasing the learning rate when faced with high volatility and decreasing it in the presence of a noisy or 521 

highly stochastic environment. Such modulation has been observed in many studies of learning including 522 

fear conditioning and some reward-based learning70,72–75. However, as we have shown in a previous 523 

study13, implicit adaptation is insensitive to perturbation variance and, in a related manner, insensitive to 524 

the rate of switching between clockwise and counterclockwise perturbations (Exp 5).  525 

 526 

We note that, with respect to the latter, the rate of learning is attenuated when the sign of the 527 

perturbation changes relative to a fixed perturbation. But this attenuation is another manifestation of 528 

anterograde interference; the degree of attenuation is not affected by the frequency of these sign changes.  529 

In sum, the signatures of context-dependent learning and environmental uncertainty emerge naturally 530 

from a population of tuned elements that operate in an inflexible manner.   531 

 532 

Given the impressive flexibility in human motor learning, it might be surprising that implicit adaptation 533 

does not explicitly track the context or uncertainty of the environment given the relevance of these two 534 

factors for other learning systems29,55,68. We propose that this rigidity reflects a degree of modularity 535 

between processes associated with action selection and those related to movement implementation. The 536 

cerebellum is part of a system designed to use error information to ensure the accurate execution of a 537 

desired movement.  The emphasis here is on “desired movement” rather than “planned action” to 538 

underscore the point that this system appears to operate independent of the task goal; indeed, 539 
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participants will adapt to sensory prediction errors even when the change in behavior is detrimental to 540 

task success5,8.  This modularity provides a means to keep the system properly calibrated across changes 541 

in the internal state of the organism (e.g., perceptual biases, fatigue), factors that need not require a 542 

change in action planning. In contrast, other learning systems are designed to use error information 543 

related to task success to determine if the selected action was optimal given the current context. These 544 

systems would be optimized to track contextual shifts in determining the appropriate policy. Consistent 545 

with this hypothesis, contextual effects such as savings and sensitivity to uncertainty are observed in 546 

adaptation tasks that benefit from changes in action selection57,76,77.  547 

 548 

Hierarchical Organization Within the Cerebellum for Implicit Adaptation 549 

By using trial-by-trial and block designs, we verified that implicit adaptation operates on multiple 550 

timescales.  This idea was first articulated by Smith and colleagues18 who described the parallel operation 551 

of fast and slow processes in response to a large perturbation. Subsequent studies have led some 552 

researchers to postulate that the fast and slow systems map onto explicit and implicit learning processes49. 553 

The current results provide new evidence that learning limited to the implicit system operates at different 554 

timescales. However, rather than view these timescales as properties of learning processes that operate 555 

in parallel (e.g., fast vs slow), our empirical and modeling results highlight a hierarchical organization in 556 

which accumulated learning from a labile process will constrain the learning rate of a stable process.  This 557 

organization readily maps onto a two-layered network formed by cerebellar cortex and DCN, with the 558 

output from the former gating learning within the latter.42 Reflective of the hierarchical organization, 559 

there is an asymmetric dependency such that the synaptic strength in the cerebellar cortex determines 560 

PC output which will modulate the learning rate within the DCN. 561 

 562 
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The two-layer model provides an alternative explanation for another type of context-dependent learning, 563 

contextual interference.  The term is a bit of a misnomer since the phenomenon refers to the fact that, 564 

while performance gains when training in multiple contexts is slower compared to training in a single 565 

context, retention is better in the former78,79. As such, the exposure to multiple contexts during training 566 

actually enhances learning as measured by long-term gains. Interestingly, this phenomenon is not limited 567 

to skill acquisition tasks but is also observed in studies of implicit adaptation80 (see Fig S9). As shown in 568 

our simulations and Exp 10, contextual interference, at least in the context of implicit adaptation, is an 569 

emergent property of the parallel operation of labile and stable learning processes. With multiple targets 570 

(constituting multiple contexts), the rate of acquisition is slower compared to a single target since learning 571 

from the labile process decays between successive reaches to a given target.  However, early retention is 572 

higher since the contribution of the labile process is small. Thus, as with anterograde interference, 573 

contextual interference arises from the dynamics of the system without postulating any representation 574 

of context. 575 

 576 

Future Directions 577 

We recognize that there are certain limitations with the CPC model in its current form. A key feature of 578 

the model is the hierarchical organization of a two-layer network, one that we have attributed to the 579 

organization of the cerebellar cortex and DCN. We have assumed that learning operates at different 580 

timescales within these two layers, with plasticity operating at a faster time scale in the cerebellar cortex 581 

compared to the DCN. The neurophysiological evidence is consistent with this assumption: While the 582 

change of SS activation in the PCs can happen across a few trials22,63, the change of dynamics in DCN can 583 

be associated to behavior changes across sections or across days25,38. Nonetheless, this assumption should 584 

be put to more direct evaluation. For example, experiments that examine the neural correlates of the rate 585 

in the change in behavior.  This could be accomplished by simultaneous recordings in the PCs and DCN.  586 
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Alternatively, it may be possible to look for anatomical-behavioral correlations in patients who vary in the 587 

relative degree of atrophy in the cerebellar cortex or DCN. 588 

 589 

A two-layered model is clearly a simplification. Indeed, to explain the asymptotic convergence in the long 590 

and short ITI conditions, we had to incorporate a third layer into the model, creating a closed loop by 591 

adding a projection from the DCN to the IO. While the anatomy supports the existence of this pathway, 592 

to achieve convergence, we added two specific features to the dynamics of this pathway. First, inhibition 593 

from the DCN to the IO exhibits a unique temporal dynamic, with its intensity decreasing over time.  594 

Second, the projection is generic, inhibiting IO units independent of the directional tuning of the DCN 595 

neuron.  These two assumptions need to be tested in future physiological studies. 596 

 597 

The current model does not address one prominent feature of cerebellar-dependent learning, namely the 598 

sensitivity of this system to temporal regularities and to optimize timing of a learned response.  The 599 

adaptation phenomena modeled in the current paper do not entail a temporal component: Each trial 600 

results in a directional error that is used to adjust the output of the system.  However, timing is central to 601 

other types of cerebellar-dependent learning such as eyeblink conditioning where the animal learns to 602 

produce a conditioned response at an optimal time81–85.  In models of eyeblink conditioning, the 603 

interaction between granule cell, interneurons, and Purkinje cell activity will, across the population, 604 

produce a sustained representation of the conditioned stimulus. The timing of the output will be shaped 605 

by the interaction of this pattern with the input provided by the unconditioned stimulus.  Generalizing the 606 

CPC model to other forms of cerebellar-dependent learning will likely require adding these other elements 607 

and dynamics.   608 

 609 
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The above sketches how population coding could be exploited to provide a more general account of 610 

cerebellar function. We should also consider how the principles of population coding elucidated in the 611 

CPC model might apply beyond the cerebellum. In particular, population-level dynamics might be 612 

applicable to understand contextual effects in other domains such as perceptual learning86,87. 613 

 614 

Methods 615 

Cerebellar Population Coding (CPC) model 616 

The core features of the CPC model have been presented in the Results section. In the following section 617 

we describe how the parameters of the model are determined.  618 

 619 

We used an empirical approach to estimate the learning and forgetting rate for PF-PC synapses, using the 620 

data from Exp 5 in which +/- 30° clamps were presented with a 50% switching probability. To measure 621 

single trial learning, we calculate the change of hand angle between trial n and trial n-1, flipping the sign 622 

when the clamp on trial n-1 was negative. To measure single trial forgetting, we calculate the change of 623 

hand angle between trial n and trial n-1, flipping the sign when the clamp on trial n-2 was negative. 624 

 625 

PF-PC forgetting (𝑓) is the ratio of single-trial forgetting and single-trial-learning. By definition, retention 626 

rate is 1- (𝑓). We applied the same method to measure the retention for all trial-by-trial designs and this 627 

gave us an 𝑓 around 0.5. Model simulations indicate that this method can precisely estimate retention 628 

when the perturbation is random. In all of these analyses, we excluded the first 50 trials since learning at 629 

this early stage is influenced by both PC and DCN.  For comparing the learning rate between early and late 630 

training in a trial-by-trial design, we employed the same general approach but limited the analysis to the 631 

first 50 trials to estimate early learning (Fig S5).  632 

 633 
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The baseline and maximal strength of MF-DCN synapses can be set to arbitrary values: We used 1 and 634 

1.85 for 𝑚&	and		𝑚'()  ,  respectively. We measured the retention rate of the MF-DCN synapse (𝛼 ) 635 

empirically using the data from the no-feedback washout phase in Exp 1: 636 

𝛼 = M𝑚𝑒𝑎𝑛(
𝑦"$%*

𝑦"
)

!"
 637 

where	𝑦" is the hand angle in trial n. The first 20 trials in the washout phase were excluded since they 638 

may be contaminated by a labile process.  639 

 640 

The learning rate of the PC (𝑙) and DCN (ß) and the scaling factors (g, 𝜀) were jointly fitted from the 641 

learning block in Exp 1 and the single trial learning in Exp5. This results in a parameter set as follow: 𝑙 642 

= .05,	𝑓 = .018, ß = 2, 𝛼 = .5, g = 0.15, 𝜀 = 130. These parameters were fixed in the simulations of all the 643 

other experiments. The two exceptions are mentioned below. 644 

 645 

First, in Exp 7, we examined how error size modulated learning using a block design in which the clamp 646 

was at 3° or 30° clamp in separate conditions (between-subject). The prediction for the 30° clamp 647 

condition was generated based on the parameter set described above. For the 3° clamp, we applied a 648 

scale factor of 0.33 on CS activation:  649 

[6]	𝑐𝑠(3°) = 0.33 ∗ 𝑐𝑠(30°) 650 

This value was based on the empirically observed values for 3° and 30° clamps in the trial-by-trial design 651 

of Exp 6. Second, in Exp 10, we set the PF-PC retention rate for the long ITI conditions (𝑓+) to be 0.3, based 652 

on the empirically-observed value in the trial-by-trial design of Exp 9.  653 

 654 

Recurrent Suppression Cerebellar Population Coding (RSCPC) model 655 
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The results of Exp 9 led us to develop a post-hoc variant in which the output of the cerebellum modulates 656 

the input, an idea that is consistent with cerebellar anatomy and physiology65,66. The basic version of the 657 

CPC model predicts that learning in a long ITI condition will reach a lower asymptote compared to a short 658 

ITI condition. This occurs because the contribution of the labile process is suppressed in the long ITI 659 

condition. However, the results of Exp 10 showed that, with a sufficient number of trials, learning in the 660 

long ITI condition eventually reaches the same asymptote as in the short ITI condition. This observation 661 

led us to revise the model by adding an inhibitory pathway from the DCN to the inferior olive65,66., what 662 

we will refer to as the cerebellar population coding model with recurrent suppression (RSCPC). 663 

 664 

We assume that the output of the DCN integrates the activation of directionally tuned units and that this 665 

signal serves as a generic inhibitory signal to the inferior olive. We implemented this recurrent suppression 666 

by subtracting a common value from the activation of cells tuned to all error directions in the inferior olive 667 

(IO): 668 

[8]𝐼𝑂! = 	1 − 𝜔 ∗G𝑑𝐷𝐶𝑁!"

!

 669 

[9]	if	𝐼𝑂! > 0:	𝑐𝑠+! = 𝐼𝑂! ∗ 𝑐𝑠!; 670 

otherwise:	𝑐𝑠+! = 0 671 

where 𝜔 represents the strength of suppression. Given the assumption that 𝜔 decreases across time, we 672 

used separate parameter values of 𝜔 for the long and short ITI conditions  ∑ 𝑑𝐷𝐶𝑁!"!   is the sum of the 673 

change of all NCD units relative to their baseline activities. 𝑐𝑠′!  is the corrected CS activation value after 674 

taking the DCN-IO pathway into the consideration and replaces the 𝑐𝑠!  term in EQ [1-5]. The retention 675 

rates of the labile and stable processes (f, 𝛼) in the RSCPC model were set as in the basic two-layer model. 676 

The other parameters (𝑙, ß, 𝜀, 𝜔) were jointly fitted from two data sets, the learning block in Exp 1 and the 677 

trial-by-trial condition in Exp 9. The parameter set is as follow: 𝑙 = .1,	𝑓 = .018, ß = 2, 𝛼 = .5, g = .2, 𝜀 = 210, 678 

𝜔(𝑠ℎ𝑜𝑟𝑡)	= 2.5, 𝜔(𝑙𝑜𝑛𝑔)	= 0. 679 
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 680 

Alternative Models for Comparison  681 

Variants of the CPC Model  682 

To help clarify the importance of a two-layer model, we describe two variants of the CPC model. First, we 683 

implemented a single-layer version of the CPC model by modifying Eq 4 to: 684 

[7]	𝐷𝐶𝑁!"$% = 𝑚!
"$% 685 

In this version, the output of the system is solely determined by the strength of the MF-DCN. 686 

 687 

Second, we implemented a model in which the labile and the stable processes operate in parallel 688 

(PARALLEL) rather than hierarchical as in the CPC (and RSCPC) model. Since the stable process is insensitive 689 

to ITI, we estimate the MF-DCN synapse (𝑚) by simulations using a short ITI. The simulated value was then 690 

used in simulations of the long ITI condition. For the labile process, the strength of the PF-PC synapse (𝑤) 691 

was measured separately for the two ITI conditions. 692 

 693 

State-space model 694 

We employed a standard version of a state-space model18,48: 695 

[10]	𝑥(𝑛 + 1) = 𝑎 ∗ 𝑥(𝑛) + 𝑏(𝑒, 𝑛)𝑒(𝑛) + 𝜀,(𝑛)						 696 

where 𝑥 is the internal estimate of the motor state (i.e., the hand movement required to compensate for 697 

the perturbation), 𝑎 is the retention factor, 𝑒(𝑛) is the size of the perturbation in trial 𝑛, 𝑏	is the error 698 

sensitivity for a given error size, and 𝜀,	represents planning noise. 699 

 700 

The actual motor response on trial 𝑛 is given as: 701 

[11]	𝑦(𝑛) = 𝑥(𝑛) + 𝜀-(𝑛)	     702 

where 𝑦 is the reaching direction relative to the target, determined by 𝑥(𝑛) and motor noise, 𝜀-	.  703 
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 704 

Memory-of-Error Model (MoE) 705 

The Memory-of-Error model describes how the learning rate in the state space model is modulated by 706 

experience. In the MoE model, error sensitivity (b) is set to an initial value that is modulated by errors that 707 

are experienced during training. Specifically, b(e,n) will increase if the error on trial n+1 shares the same 708 

sign and b(e, n) will decrease if the error on trial n+1 is of the opposite sign. This is formalized as: 709 

[12]	𝑏(𝑒(𝑛), 𝑛 + 1) = a ∗ (𝑏(𝑒(𝑛), 𝑛 + 1) − 𝑏0) + 𝑏0 + 	b ∗ 𝑠𝑖𝑔𝑛(𝑒(𝑛) ∗ 𝑒(𝑛 + 1))			 710 

where b	and a are the learning rate and retention rate of b, respectively. Since the error size is fixed at 711 

30° in our experiments, we replace 𝑏(𝑒) with a single value 𝑏. 712 

 713 

Contextual Inference (COIN) model 714 

We simulated the Contextual Interference (COIN) using the code provided by Heald et al.29, focusing on 715 

its prediction with respect to savings and spontaneous recovery. We assumed that the introduction of a 716 

perturbation (e.g., clamped feedback) defines a new context and, as such, leads to the establishment of a 717 

new motor memory. Similarly, reversing the sign of the perturbation would define another context and 718 

thus require establishment of another memory. We simulated the clamps as if they were contingent 719 

rotations so that the learning can reach an asymptote. Before each movement, the output is determined 720 

by averaging the state of different contexts weighted by the expected probabilities of the contexts. 721 

Participants observed an error after each movement and update the state estimation.  722 

 723 

Behavioral Experiments  724 

 725 

Participants 726 
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A total of 451 participants (297 female, mean age = 28.0, SD = 5.3) were recruited through the website 727 

prolific.co. After eliminating participants who failed to meet our performance criteria (2.8%, see below), 728 

the analyses were based on data from 438 participants.  Based on a survey included in a prescreening 729 

questionnaire, the participants were right-handed with normal or corrected-to-normal vision. The 730 

participants were paid based on a rate of $8/h. The protocol was approved by the Institutional Review 731 

Board at the University of California, Berkeley. Informed consent was obtained from all participants. 732 

 733 

Apparatus 734 

All of the behavioral experiments were conducted online using a web-based experimental platform, 735 

OnPoint62, which is written in JavaScript and presented via Google Chrome. It is designed to operate on 736 

any laptop computer. Visual stimuli were presented on the laptop monitor and movements were 737 

produced on the computer trackpad. Data were collected and stored using Google Firebase.  738 

 739 

Clamp rotation task  740 

We applied clamp feedback in the experiments, under the assumption that learning in response to this 741 

type of feedback is limited to implicit, cerebellar-dependent sensorimotor recalibration. To start each trial, 742 

the participant moved the cursor to a white start circle (radius: 1% of the screen height) positioned in the 743 

center of the screen. After 500ms, the target, a blue circle (radius: 1% of the screen height) appeared with 744 

the radial distance set to 40% of the screen size. The target appears at -45°, a workspace location selected 745 

because is exhibits minimal bias across participants88. The participant was instructed to produce a rapid, 746 

out-and-back movement, attempting to intersect the target. If the movement time (from onset to time at 747 

which movement amplitude reached the target) was longer than 500ms, the message ‘Too Slow’ was 748 

presented on the screen for 500ms.  749 

 750 
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There were three types of feedback. On veridical feedback trials, the position of the cursor moved was 751 

matched to the position of the hand, subject to the translation in reference frames (screen assumed to 752 

be vertical, hand movement assumed to be horizontal) and scaling (trackpad space expanded to 753 

encompass most of the screen).  On clamped feedback trials, the cursor followed a fixed path. As with 754 

veridical feedback, the radial location of the cursor was based on the radial extent of the participant’s 755 

hand. However, the angular position of the cursor was independent of the position of the hand, instead 756 

determined relative to the position of the target. The clamp angle was set at 30° relative to the target 757 

except for Exp 6 and 8 (see below).  On no feedback trials, the cursor was blanked at movement onset.  758 

 759 

On veridical and clamped feedback trials, after the amplitude of the movement reached the target 760 

distance, the cursor was presented at the target distance for another 50ms then it disappeared. Target 761 

disappeared after 200ms. The cursor was then reset to a random position on an invisible circle with a 762 

radius equal to 10% of the target distance and the participant moved the cursor back to the start circle. 763 

 764 

At the onset of the first block of trials involving perturbed feedback, the experiment was paused and a set 765 

of instructions were presented to describe the clamped feedback. The participant was informed that the 766 

cursor would no longer be linked to their movement but rather would follow a fixed path on all trials. The 767 

participant was instructed to always reach directly to the target, ignoring the cursor. These instructions 768 

were then repeated twice to emphasize the atypical nature of the feedback. After the first 10 trials with 769 

clamped feedback, a new instruction screen appeared in which the participant was asked to indicate 770 

where they were aiming on each trial. If the participant indicated they were reaching somewhere other 771 

than the target, the experiment was terminated. 772 

 773 
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Each experiment started with two baseline blocks:  First a no-feedback block of 10 trials and second, a 774 

veridical feedback block of 10 trials. For experiments using a block design (direction and size of 775 

perturbation remains constant), the direction of the clamp (counterclockwise, CCW; clockwise; CW) was 776 

counterbalanced across participants.  777 

 778 

Experiment 1 779 

Exp 1 was designed to determine the parameters of the CPC model. There was a total of 180 trials. The 780 

two baseline blocks were followed by a learning block of 100 trials with clamped feedback with learning 781 

expected to reach an asymptotic level in response to a fixed perturbation. This was followed by a final no-782 

feedback block of 60 trials. 30 participants were recruited for Exp 1 (29 valid, 5 males, age: 27.4 ± 4.9 783 

years). 784 

 785 

Experiment 2 786 

Exp 2 was designed to evaluate different models of asymptotic adaptation. The 10-trial feedback baseline 787 

were followed by a learning block of 100 trials with clamped feedback. Then the last 60 trials alternated 788 

between no-feedback and clamp feedback trials (half-wash phase). 40 participants were recruited for Exp 789 

2 (38 valid, 8 males, age: 30.7 ± 6.6 years). 790 

 791 

Experiment 3 792 

Exp 3 was designed to measure antegrade interference. The baseline and initial perturbation blocks were 793 

as in Exp 2. For the final block (150 trials), the direction of the clamp was reversed (e.g., from 30° to -30°). 794 

30 participants were recruited for Exp 3 (30 valid, 10 males, age: 30.3 ± 4.3 years).    795 

 796 

Experiment 4 797 
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Exp 4 was designed to assess spontaneous recovery and savings in implicit adaptation. The baseline and 798 

initial perturbation blocks were as in Exp 2.  We then included a 15-trial block with the clamp reversed 799 

under the assumption that this would be a sufficient number of trials to bring the hand angle back to 800 

baseline. This was followed by no-feedback block (35 trials) to examine spontaneous recovery and then a 801 

100-trial relearning block in which the clamp feedback was identical to that used in the first perturbation 802 

block. 34 participants were recruited for Exp 4 (34 valid, 16 males, age: 22.7 ± 4.8 years).    803 

 804 

Experiment 5 805 

Exp 5 examined how the consistency of the perturbation influenced implicit adaptation. The first blocks 806 

were identical to Exp 4, providing initial exposure to clamped feedback and then a reversed clamp to bring 807 

the hand angle back to baseline. This was followed by a 300-trial block in which the clamp changed sign 808 

in a probabilistic manner.  The probability of a sign change was either 90%, 50%, and 12.5% in a between-809 

subject manipulation. The sequence of clamps was preset to ensure that clockwise and counterclockwise 810 

occurred on 50% of the trials each across the 300 trials.  The experiment ended with a relearning block in 811 

which the initial perturbation was presented for 100 trials. 36/40/36 participants were recruited for 90%, 812 

50%, and 12.5% conditions respectively (34/38/33 valid, 37 males, age: 28.6 ± 5.5 years). 813 

 814 

Experiment 6 815 

To estimate the learning rate and retention at top layer of the CPC model, the PF-PC synapse, we 816 

employed a trial-by-trial design in which the error size and direction varied across trials. After the two 817 

baseline sections, participants completed a 540-trial random perturbation block. Here the clamp size 818 

ranged from -135° to 135° in steps of 1°. The size/direction was determined at random with the constraint 819 

that each clamp was selected once every 270 trials.  72 participants were recruited for Exp 6 (70 valid, 25 820 

males, age: 26.2 ± 5.2 years). 821 
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 822 

Experiment 7 823 

Experiment 7 was designed to measure the time course of retention during the initial washout phase. 824 

After the two baseline sections, The perturbation block consisted of 31 mini-blocks, each composed of 10 825 

trials with clamped feedback and 10 trials without feedback (620 trials). 57 participants were recruited 826 

for Exp 7 (57 valid, 12 males, age: 28.3 ± 5.4 years). 827 

 828 

Experiment 8 829 

Experiment 8 examined how error size influences learning in a block design. Two groups of participants 830 

experience a 10-trial feedback baseline and a 100-trial perturbation block in which the clamp size was 831 

either 3° or 30°. 36 participants were recruited for Exp 8 (35 valid, 18 males, age: 30.8 ± 7.7 years). 832 

 833 

Experiment 9 834 

To quantify the temporal dynamics of labile processes, we performed a trial-by-trial design with extended 835 

inter-trial intervals (ITI) in Exp 9.  For the long ITI, the interval between the end of one trial and the start 836 

of the next trial was 6s, 7s, or 8s, randomized across trials. The message "wait" was displayed on the 837 

monitor after each trial. Exp 9 included two baseline blocks and a 180-trial learning block in which a 30° 838 

perturbation was randomly selected to be either clockwise or counterclockwise, subject to the constraint 839 

that each direction occurred four times every 8 trials.  For the short ITI condition, we used the data from 840 

Exp 5 for the trial-by-trial condition (0 s ITI).  28 participants were recruited for each condition (27 valid, 841 

13 males, age: 28.1 ± 4.8 years). 842 

 843 

Experiment 10 844 
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To understand how the labile and stable learning processes are jointly modulated by time, we perform a 845 

block design in Exp 10. We followed a similar design to Exp 1, with only one notable modification. We 846 

included a 10-trial filmization block following the two baseline blocks to demonstrate the clamp feedback. 847 

The clamp size in the filmization block varied from -90° to 90° across trials to show that the cursor is 848 

unaffected by the direction of hand movement. To avoid the influence of pre-exposure to the error signal 849 

on learning, the filmization block utilized a different target (45°) from the other blocks (315°). Two groups 850 

of participants perform the task with either long ITI (6-8s) or short ITI (0s). 26 participants were recruited 851 

for each condition (51 valid, 21 males, age: 26.8 ± 4.6 years). 852 

 853 

Data analyses 854 

Hand angle was calculated as the angle difference a line from the start position to the target and a line 855 

from the start position to the hand position at the target radius. Positive values indicate hand angles in 856 

the opposite direction of the perturbation, the direction one would expect due to adaptation. Trials with 857 

a movement duration longer than 500 ms or an error larger than 70° were excluded from the analyses. 858 

We excluded the entire data from participants who had less than 70% valid trials (2.8% participants). 859 

Between-condition comparisons were performed with t-tests or ANOVAs. Learning and relearning are 860 

compared by paired-t-test. For all the statistical tests, we confirmed that the data met the assumptions 861 

of a Gaussian distribution and homoscedasticity. 862 
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Supplementary Information 1046 

 1047 

 1048 

Fig. S1 Effect of experience and error consistency on implicit adaptation. a) Attenuation in relearning in 1049 

Exp 4. Adaptation was attenuated in response to re-exposure to a perturbation compared to the initial 1050 

exposure (t(33)=3.1, p=0.004) Data are averaged across each training phase. b) Spontaneous recovery was 1051 

not observed in Exp 4 during the no-feedback phase after washout. Hand angle over the first 5 trials of 1052 

the no-feedback phase (Early) is similar to hand angle over the last 5 trials (Late, t(33)=1.2, p=0.23). c)  1053 

Error consistency did not affect adaptation during initial learning and during relearning in Exp 5. A mixed 1054 

ANOVA showed a main effect of learning/relearning, (F(1,101)=37.7, p<0.001), similar to the antegrade 1055 

interference observed in Exp 3. There was no effect of error consistency (F(2,101)=0.18, p=0.84) or 1056 

interaction between phase and error consistency (F(2,101)=0.12, p=0.88). Box plots indicate median, max 1057 

and min values, and 25% and 75% quartiles. 1058 
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 1060 
Fig. S2 The CPC model incorporates adaptation at different rates. a) Modeling adaptation learning 1061 

functions frequently requires postulating multiple learning processes rather than a single-process state-1062 

space (SS) model. The panel depicts a learning curve from Avraham et al (2022) in which participants were 1063 

exposed to a 30° (intermixed with 0° clamps, but not relevant for the current point). A single-process 1064 

state-space model can capture the rapid change in hand angle early in learning but then saturates, failing 1065 

to capture the gradual increase in late adaptation. The CPC model simultaneously captures early and late 1066 

adaptation through the operation of multiple learning processes.  b) Cells with a tuning direction (TD) 1067 

aligned to the error direction (blue) respond strongly to the error (left), driving rapid early adaptation and 1068 

saturate quickly (right).  Cells with tuning misaligned with the error direction (orange, π/6 in this example) 1069 

have a relatively low error response early in training but make a relatively large contribution late in 1070 

training. Note that “fast” and “slow” emerge from the tuning properties of units within a single layer (DCN).  1071 
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 1073 

 1074 

Fig. S3 Predicted time course of stable and labile processes in Exp 3-5. The stable process is responsible 1075 

for anterograde interference (a) and attenuation in relearning (b-c). The labile process does not make a 1076 

significant contribution to either phenomenon because of its low retention rate. 1077 
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 1079 

 1080 

Fig. S4 Retention increases during the initial washout trials. a) To provide a stronger test of how the rate 1081 

of retention changes (Exp 1), Exp 7 included mini-blocks (10 trials/mini-block) that alternated between 1082 

clamp and no feedback trials. B) We estimated the change in retention rate over time by averaging by trial 1083 

number across the no feedback blocks. Retention is relatively low in the first trials of the washout block 1084 

and gradually rises (F(6,264)=4.64, p<0.001). The dark green curve shows the fit of the CPC model. 1085 
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 1087 

Fig. S5 Contribution of stable and labile processes in response to variable perturbations. a) The stable 1088 

process (top) contributes to learning during early training and has saturated by the 50th trial. The 1089 

contribution of the labile process (bottom) remains similar throughout training. b) Change in hand angle 1090 

as a function of trial number when the size and direction of the perturbation varies across trials. The 1091 

change of hand angle is larger in early training because the stable process has not saturated.  1092 
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 1094 

Fig. S6 Learning rates of the labile and stable processes are modulated in a similar way by error size. a) 1095 

Predicted time course of state of stable and labile processes in Exp 7. Both processes are attenuated in 1096 

the 3° condition compared to the 30° condition. b) Effect of error size on labile processes in an in-person 1097 

set up, estimated from Exp 3 of Tsay et al62 in which clamp size was 4° or 16°. c), Learning functions (left) 1098 

and the ratio between the two error size conditions (right) from Exp 1 of Kim et al59 with clamp sizes of 1099 

3.5° or 15°. Dotted lines show predictions of the CPC model using the learning rate measured by Tsay et 1100 

al62. Shaded area and error bars indicate standard error. 1101 
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 1103 

Fig. S7 Revised CPC with recurrent inhibitory pathway. The original CPC predicts that the asymptote 1104 

should be lower in the long ITI condition compared to the short ITI condition because the latter includes 1105 

a labile component. However, as shown in Fig 7, the asymptote is similar in the two ITI conditions.  This 1106 

observation motivated a revision to the CPC model in which the DCN sends a recurrent inhibitory signal 1107 

to the inferior olive.  a) Model schematic.  DCN-IO inhibition suppresses the error signal to the DCN and 1108 

cerebellar cortex. This suppression is generic given that the output of the DCN integrates activation across 1109 

directionally tuned units.  b) When the inter-trial-interval is short, the CS response is suppressed (top). 1110 

Note that the suppression is implemented by subtracting a common value to the IO and thus alters the 1111 

activation in PCs. On the next trial, SS activation is stronger in the long ITI condition since the PF-PC 1112 

synapse will have recovered during the ITI (middle). However, there are a subset of tuned elements that 1113 

in which SS activation is weaker in the long ITI condition (yellow arrows).  This weaker activation induces 1114 

adaptation in DCN units tuned to the same direction (bottom). c) State of the labile and stable processes 1115 

over the course of a block design under long and short ITI conditions.  The change in the labile process is 1116 

smaller in the long ITI condition due to forgetting. The stable process is also smaller in the long ITI 1117 

condition because SS activity at the preferred error direction will dominate learning. However, the long 1118 
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ITI condition induces adaptation in neurons with sub-preferred error directions, resulting in larger 1119 

adaptation late in training.  1120 
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 1121 

 1122 

Fig. S8 Revised CPC model provides a good fit for the key results for all of the experiments. Dark green 1123 

line depicts model prediction. Error bars (c, g, h, i) and shaded areas (a, b, d, e) indicate standard error. 1124 
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 1126 

Fig. S9 Revised CPC model accounts for effect of number of target locations on adaptation. a) In Tsay & 1127 

Irving89, participants were trained with either one target or three targets. In both conditions, participants 1128 

reached to a single target during the washout block. b) Learning functions for the target location probed 1129 

during washout. The 3-target condition showed slower learning but a larger aftereffect. Adding more 1130 

targets is effectively akin to imposing a long ITI since successive reaches to a given target are separated 1131 

by reaches to the other two locations; thus, there is more forgetting but stronger retention due to reduced 1132 

contribution of labile process. Shaded area in b indicates standard error. Dash lines indicate the 1133 

predictions of RSCPC.  1134 
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Table S1. Comparison of the CPC model and other models of sensorimotor adaptation. 1136 
 1137 

 CPC Dual State Space18 MoE57 COIN29 Credit Assignment58 

Minimal attenuation in half 
washout (Exp 2) ✓ ✗ ✗ ✓ ✓ 

Anterograde interference (Exp 3) ✓ ✓ ✗ ✓ ✗ 

Attenuation in relearning (Exp 4) ✓ ✗ ✗ ✗ ✗ 

Attenuation with opposite errors 
but being invariant to error 
consistency (Exp 5) 

✓ ✗ ✗ ✗ ✗ 

Different retention rates for trial 
by trial and block designs ✓ ✓ ✗ ✓ ✓ 

Fast single trial learning to 
random perturbation (Exp 6) ✓ ✓ ✗ ✗ ✓ 

Fast single trial learning around 
the asymptote (Exp 2) ✓ ✗ ✗ ✗ ✗ 

     1138 

Table comparing CPC and other models of sensorimotor adaptations on set of core phenomena (rows). In 1139 

evaluating each of the models, we used an implementation based on that presented in the associated 1140 

paper (recognizing that a reasonable variant might be possible to capture more of the phenomena).  The 1141 

listed outcomes are described in the text with the exception of the credit assignment model (Kording et 1142 

al., 2017). The credit assignment model assumes that the agent performs Bayesian inference to 1143 

decompose the observed error into perturbation sources that vary across different time scales and 1144 

estimates the optimal policy to compensate for them.  1145 
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