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Abstract

■ Losing a point in tennis could result from poor shot selec-
tion or faulty stroke execution. To explore how the brain
responds to these different types of errors, we examined
feedback-locked EEG activity while participants completed a
modified version of a standard three-armed bandit probabilistic
reward task. Our task framed unrewarded outcomes as the
result of either errors of selection or errors of execution. We
examined whether amplitude of a medial frontal negativity
(the feedback-related negativity [FRN]) was sensitive to the dif-
ferent forms of error attribution. Consistent with previous
reports, selection errors elicited a large FRN relative to rewards,
and amplitude of this signal correlated with behavioral

adjustment after these errors. A different pattern was observed
in response to execution errors. These outcomes produced a
larger FRN, a frontocentral attenuation in activity preceding this
component, and a subsequent enhanced error positivity in
parietal sites. Notably, the only correlations with behavioral
adjustment were with the early frontocentral attenuation and
amplitude of the parietal signal; FRN differences between execu-
tion errors and rewarded trials did not correlate with subsequent
changes in behavior. Our findings highlight distinct neural cor-
relates of selection and execution error processing, providing
insight into how the brain responds to the different classes of
error that determine future action. ■

INTRODUCTION

When an action fails to produce the desired goal, there is a
“credit assignment” problem to resolve: Did the lack of
reward occur because the wrong course of action was
selected, or was it because the selected action was poorly
executed? Consider a tennis player who, midgame, must
determine whether losing the last point was the result of
selecting the wrong action or executing the action poorly.
The player might have attempted a lob rather than the
required passing shot, an error in action selection. Alterna-
tively, a lob might have been appropriate but hit with
insufficient force, an error in motor execution.
Reinforcement learning presents a framework for

understanding adaptive behavior through trial-and-error
interactions with the environment. According to numer-
ous models (e.g., temporal difference learning; Sutton &
Barto, 1998), the discrepancy between expected and
actual outcomes, the reward prediction error (RPE), pro-
vides a learning signal that allows an agent to refine its
predictions and update its action selection policy. How-
ever, what happens when a negative prediction error
could arise from either poor action selection or poor
response execution?

To address this question, McDougle et al. (2016) used a
“bandit” task in which participants chose between two
stimuli to maximize reward. In one condition, choices
were made using a standard button-press method, a situ-
ation in which the negative prediction errors on unre-
warded trials were attributed to poor action selection
(given the negligible demands on motor execution). In a
second condition, choices were made by reaching to the
desired bandit. Here, unrewarded trials were attributed to
movement execution errors. In the latter condition, partic-
ipants strongly discounted the negative prediction errors
on unrewarded trials relative to the former condition. The
authors hypothesized that errors credited to the motor
execution system block value updating in the action selec-
tion system. Consistent with this hypothesis, McDougle
et al. (2019) reported that RPE coding in the human stria-
tum was attenuated after execution errors, relative to
selection errors. Differences between responses to selec-
tion and execution errors have been attributed to a greater
sense of “agency” in the latter, with participants’ choice
biases indicating a belief that they can reduce execution
errors by making more accurate movements (Parvin,
McDougle, Taylor, & Ivry, 2018).

A window into the processes that underlie outcome
monitoring is offered through the discovery of the
feedback-related negativity (FRN), a negative deflection
in the EEG first identified after the presentation of

1University of Leeds, 2Yale University, New Haven, CT, 3Univer-
sity of Lincoln, 4University of California, 5Monash University
Malaysia, 6Princeton University

© 2022 Massachusetts Institute of Technology Journal of Cognitive Neuroscience X:Y, pp. 1–18
https://doi.org/10.1162/jocn_a_01824



feedback indicating incorrect responses (Miltner, Braun,
& Coles, 1997). After its identification, the component
quickly became the subject of intense investigation as a
marker signaling gains and losses (Gehring & Willoughby,
2002) and outcomes that are worse than expected
(Holroyd, Hajcak, & Larsen, 2006). The most prominent
explanation of its significance, the “reinforcement learning
theory of the error-related negativity” (Holroyd & Coles,
2002), holds that the component (and its response-locked var-
iant, the error-related negativity [ERN]) indexes the activity of
signals from themidbrain dopamine that are conveyed to the
ACC for adaptivemodificationof behavior (Holroyd&Ume-
moto, 2016; Holroyd & Coles, 2002). Recent developments
reveal thatmuchof the variation in this component is driven
by a positive going component (a reward positivity [RewP])
responding to outcomes that are better than expected
(Proudfit, 2015; Foti, Weinberg, Dien, & Hajcak, 2011; Hol-
royd, Pakzad-Vaezi, & Krigolson, 2008). Irrespective of
whether this signal is framedasa feedbacknegativityorRewP
(here, we refer to this component as the FRN—the most
widely used label), there is a consensus, as indicated by a
meta-analysis of 55 data sets (Sambrook&Goslin, 2015), that
it is sensitive to RPE.

The FRN’s sensitivity to errors of action is more conten-
tious. A series of experiments (Krigolson, Holroyd, Van
Gyn, & Heath, 2008; Krigolson & Holroyd, 2006, 2007a)
contrasting high-level (goal-attainment) errors, variously
operationalized as a failure to reach a target (Krigolson
et al., 2008; Krigolson & Holroyd, 2007a), avoid a collision
(Krigolson & Holroyd, 2006, 2007b), and the erroneous
selection of the wrong hand or force (de Bruijn, Hulstijn,
Meulenbroek, & Van Galen, 2003) with low-level errors
(i.e., mismatch between actual and intended motor com-
mands), concluded that the latter do not elicit an FRN.
Instead, reflecting a hierarchical error processing system
(Krigolson & Holroyd, 2006), these motor errors are pro-
posed to be mediated within posterior parietal cortex
(Diedrichsen, 2005; Desmurget et al., 1999, 2001). Further
elaborations indicated that the FRNmay only be generated
for action errors that cannot be corrected (Krigolson et al.,
2008; Krigolson & Holroyd, 2007a), indicating a binary
high-level coding of outcomes in the FRN (i.e., signaling
whether the goal was achieved or not). In line with this,
a recent experiment isolating reward-based and sensory
error-based motor adaptation reported an FRN in response
to binary reward feedback, but not sensory error feedback,
which instead generated a P300 (Palidis, Cashaback, &
Gribble, 2019). Previous work on the P300’s sensitivity
to “low-level” motor execution errors led to the proposal
that this later parietally distributed component might
reflect the revision of an internal forward model in poste-
rior parietal cortex (Krigolson & Holroyd, 2007a).

A contrasting set of results suggest that the FRN (and its
response-locked variant, the ERN) may in fact be sensitive
tomotor errors and reflectmore than binary coding of out-
comes, with evidence showing that it scales with the mag-
nitude of error during sensorimotor adaptation (Anguera,

Seidler, & Gehring, 2009) and correlates with the size of
hand-path deviations after external perturbation to target
reaches (Torrecillos, Albouy, Brochier, & Malfait, 2014).
These findings are more in line with a growing body
of work suggesting that the FRN indexes a general
salience prediction error (Torrecillos et al., 2014; Oliveira,
McDonald, & Goodman, 2007). A computational model
attempting to unify a broad range of findings on medial
pFC function (Alexander & Brown, 2011) proposes that
this region is responsible for tracking discrepancies
between expectations and outcomes, which are reflected
in the FRN. Viewed in this way, the processing of execution
and selection error may share a common neural network
that signals a mismatch between the outcome and expec-
tations in the service of behavioral adaptation (Torrecillos
et al., 2014; Cavanagh, Zambrano-Vazquez, & Allen, 2012).
To test whether outcome errors of action and selec-

tion can be dissociated in the medial frontal cortex,
we recorded feedback-locked ERPs while participants
engaged in a modified bandit task where choices were
selected via rapid arm movements. Unrewarded trials
were either framed as errors in choosing the wrong bandit
(a selection error) or the result of an inaccuratemovement
(an execution error). Following a large body of evidence
reporting that the FRN is sensitive to RPE (Sambrook &
Goslin, 2015), we expected that unrewarded outcomes
attributed to selection error would elicit an FRN response.
If this medial frontal monitoring system also tracks general
action–outcome discrepancies, then we should expect a
deflection after errors of action execution too. However,
should the recently proposed movement-dependent
account of RL hold, the FRN response should be attenu-
ated when errors can be ascribed to the motor system.
We would expect P300 amplitude, a putative index of
internal forward model revision (Krigolson & Holroyd,
2007a), to be largest for execution errors.
In addition to these predictions, we also examined the

relationship between the FRN and behavioral modifica-
tion. Specifically, we predicted that participants who
exhibited a larger change in the FRN would be more likely
to switch between the different options. Notably, we
expected this brain–behavior relationship would hold for
selection errors, but not for execution errors. Reasoning
that action errors may instead be encoding information
about the size of the execution error, with this feedback
used to correct discrepancies between the planned and
actual outcomes, we explored the possibility that these
signals may be correlated with the magnitude of error
and subsequent change in motor response.

METHODS

Participants

Using an effect size estimate derived from our previous
work on the FRN (η2

p = .167; Mushtaq, Wi lk ie,
Mon-Williams, & Schaefer, 2016), with a desired statistical
power of 0.8 and alpha criterion set at .05, we set a
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minimum sample size of 28 participants. In total, we tested
32 right-handed participants (EHI > 40; Oldfield, 1971).
Two participants were excluded because of excessive
EEG artifacts, and a technical error during data collection
rendered one participant’s data set unusable. All analyses
were performed on the resulting sample of 29 participants
(19 women, 10 men, μ age = 26.75 years, ±9.51 years).
Participants were told they would be remunerated

based on their performance. However, because of the
pseudoveridical nature of outcomes (see Procedure), all
received a fixed payment of £10.00. Participants signed
an informed consent document and were fully debriefed,
and the experiment was approved by the ethics committee
in the School of Psychology at the University of Leeds,
United Kingdom.

Design and Procedure

We employed a novel three-armed bandit task (Figure 1)
where the absence of reward on a given trial could be the
product of a poorly executed action or an error in action
selection (McDougle et al., 2019). Following EEG setup,
the participant was seated in a chair approximately
50 cm away from a 24-in. ASUS monitor (53.2 × 30 cm
[2560× 1600 pixels], 100-Hz refresh rate). The participant
was instructed to make a choice by making a reaching
movement, sliding his or her right arm across a graphics
tablet (49.3 × 32.7 cm; Intuos 4 XL, Wacom) while holding
a digitizing pen encased inside a customized air hockey
paddle. The tablet was placed below the monitor on the
table and between an opaque platform that occluded
the hand.
The experimental session comprised 400 trials, with

opportunity for self-paced breaks. To initiate each trial,
the participant made a reaching movement, sliding his
or her right arm to position a white cursor (diameter of
0.5 cm) inside the home position, indicated by a solid
white circle at the center of the screen. After maintaining
this position for 400msec, the start circle turned green and
three bandits appeared on the screen (positioned at a
radial distance of 8 cm from the center at 90°, 210°, and
330° relative to the origin). The bandits were colored light
blue, dark blue, or purple, and the color–position

mappings were maintained for the entire experiment
(randomized across participants).

After the appearance of the three bandits, participants
had 2 sec to initiate a reaching movement. If the RT was
greater than 2 sec, the trial was aborted and the message
“Too Slow” appeared. After movement onset, participants
had 1 sec (movement time) to complete a rapid straight-
line “shooting” movement through one of the bandits.
Upon movement initiation, the cursor indicating hand
position disappeared and did not reappear until feedback
presentation. If the movement was not completed within
the required 1-sec window, the trial was terminated and
the error message “Too Slow” was displayed. If the move-
ment was completed within the 1-sec window, there were
three possible outcomes: If the movement was accurate
(hand passed through the bandit), the cursor was
displayed within the spatial extent of the bandit. On these
trials, there were two possible outcomes: (1) The bandit
could turn green, indicating that a reward would be earned
for the trial (reward outcome), or (2) the bandit would
turn red, indicating that, although the movement was
accurate, no reward would be given on that trial (selection
error). If the movement missed the bandit, a cursor would
appear indicating the position when the hand was at the
radial distance of the bandits and thus indicate if the exe-
cution error was clockwise or counterclockwise relative to
the target. The bandit would turn yellow, further signaling
an execution error. Participants were informed of the three
possible outcomes before the start of the experiment and
presented with demonstrations of the three outcomes.

Following McDougle et al. (2019), each bandit had its
own fixed probabilities for the three trial outcomes. All
bandits had a 40% reward outcome, and thus, the
expected values for the three bandits were identical. How-
ever, the frequency of selection error and execution error
trials varied. For one bandit, 50% of the trials resulted in
execution errors and 10% resulted in selection errors.
We refer to this as the “high execution/low selection error”
bandit. A second bandit resulted in execution errors on
10% of trials and 50% resulted in selection errors (a “low
execution/high selection error” bandit). A third, “neutral”
bandit produced an equal number (30%) of execution and
selection errors.

Figure 1. Experimental task.
(A) Participants moved a stylus
on a tablet to make rapid
shooting movements (i)
through one of three bandits
(large circles) at 90°, 210°, and
330° relative to the home
position (small circle). After a
1000-msec delay (not pictured),
pseudoveridical feedback
(white cursor) was provided
indicating if the outcome was a
reward (ii), a selection error (iii), or an execution error (iv). (B) The hand was occluded throughout, and stimuli were presented on a monitor
positioned in front of the participants at approximately eye level.
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To achieve these probabilities, outcomes were surrepti-
tiously perturbed so that they aligned with predetermined
feedback (a randomized sequence for each run) for the
selected bandit. On trials in which the actual movement
produced the desired outcome in terms of hitting or miss-
ing the bandit, the cursor was shown at its veridical posi-
tion. However, if the participant’s movement missed the
bandit, but the trial outcome was set as either a reward
or selection error (i.e., outcomes requiring successful
motor execution), the feedback showed the cursor land-
ing inside the bandit, albeit near the side consistent with
the actual hand position. Conversely, where a trial was set
to be an execution error, but the stylus successfully inter-
sected the bandit, the cursor was shifted just outside the
bandit, with the side again consistent with the actual hand
position (e.g., if the hit was slightly clockwise to the center
of the bandit, the cursor appeared outside the spatial
boundary of the bandit on the clockwise side). On trials
in which feedback needed to be perturbed (i.e., deliver a
false hit or false miss) to control the frequency of out-
comes, the cursor position was shifted by randomly sam-
pling from a normal distribution (± 6.24°, equivalent to
0.5 cm with an 8-cm reach) until a new cursor position
was chosen that landed inside the bandit (for false hits)
or outside the bandit (for false misses).

We included three further constraints to minimize the
likelihood that participants would recognize that the out-
comes were not always directly reflective of their move-
ments: (i) No online movement feedback was available;
(ii) end-point feedback was presented 1 sec after the stylus
had passed the bandit location (this also helped reduce
the impact of motor artifacts contaminating the ERP);
and (iii) if the actual reaching angle was greater than 10°
from the closest bandit on any trial (irrespective of the
set outcome), no outcome was shown, and the experi-
ment software instructed participants to “Please reach
closer to the bandit.” Trials in which the movement was
not completed within 1 sec of the onset of the bandits
or in which the reach angle was greater than 10° from
the closest bandit were repeated, ensuring a full data set
of 400 trials for each participant.

To increase motivation, participants were told that at
the end of the experiment the software would randomly
select five trials, and based on the outcomes from these
trials, a cash bonus between £1 and £5 would be provided.
As such, the goal was to accumulate as many reward trials
as possible. In actuality, all participants received a fixed
payment of £10 for taking part in the experiment.

Finally, given that it is possible that the execution error
feedback could be interpreted in different ways (e.g., par-
ticipants may have assumed these errors were the result of
faulty technical equipment), participants were invited to
complete a brief optional postexperiment survey where
they were asked to rate their agreement with the state-
ment “I felt that that the miss (yellow) outcomes were
the result of poor arm reaches” on a 7-point Likert scale,
where a score of 7 indicated strongly agree and 1 indicated

strongly disagree. From 21 respondents, a mean score of
5.57 (SD = 1.6), which was statistically significantly differ-
ent to the midpoint (neither agree nor disagree) on the
scale, t(20) = 4.41, p< .001, indicated general agreement
with the intended experimental manipulation.
The experimental task was programmed using the Psy-

chophysics Toolbox (Kleiner et al., 2007; Brainard, 1997)
and lasted approximately 35 min, with an additional 25–
30 min of technical setup for EEG data acquisition.

Electrophysiological Data Recording
and Preprocessing

EEG data were recorded continuously from 64 scalp loca-
tions at a sampling rate of 1024 Hz using a BioSemi
Active-Two amplifier (BioSemi). Four EOGs—above and
below the left eye and at the outer canthi of each
eye—were recorded to monitor eye movements. Two
additional electrodes were placed on the left and right
mastoids. The CMS andDRL active electrodes placed close
to the Cz electrode of the International 10–20 system
served as reference and ground electrodes, respectively.
EEG preprocessing was performed using the EEGLAB
(Delorme & Makeig, 2004) and Fieldtrip (Oostenveld,
Fries, Maris, & Schoffelen, 2011) toolboxes, combined
with in-house procedures running using MATLAB (The
MathWorks, Inc.).
All data were first rereferenced offline to the average of

all channels and downsampled from 1024 Hz to 256 Hz.
The continuous time series data were filtered using a
high-pass filter with a cutoff at 0.1 Hz (Kaiser windowed-
sinc FIR filter, beta = 5.653, transition bandwidth =
0.2 Hz, order = 4638) and a low-pass filter with a cutoff
at 30 Hz (Kaiser windowed-sinc FIR, beta = 5.653, transi-
tion bandwidth = 10 Hz, order = 126). A second filtering
of the data was performed for subsequent independent
component analysis using a high-pass filter cutoff at 1 Hz
(Kaiser windowed-sinc FIR filter, beta = 5.653, transition
bandwidth= 2Hz, order= 4666). ICA typically attains bet-
ter decompositions on data with a 1-Hz high-pass filter
(Winkler, Debener, Muller, & Tangermann, 2015). The
data were segmented into epochs beginning 1 sec before
and lasting 1 sec after the onset of feedback.
Infomax ICA, as implemented in the EEGLAB toolbox,

was run on the 1-Hz high-pass-filter epoched data, and
the resulting component weights were copied to the
0.1-Hz high-pass-filter epoched data. All subsequent steps
were conducted on the 0.1-Hz high-pass-filtered data.
Potentially artifactual components were selected automat-
ically using SASICA (Chaumon, Bishop, & Busch, 2015),
based on low autocorrelation, high channel specificity,
and high correlation with the vertical and horizontal eye
channels. The selections were visually inspected for verifi-
cation purposes and adjusted when necessary. After
removal of artifactual components, the Fully Automated
Statistical Thresholding for EEG artifact Rejection plug-in
for EEGLAB (Nolan, Whelan, & Reilly, 2010) was used for
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general artifact rejection and interpolation of globally and
locally artifact contaminated channels, supplemented by
visual inspection for further periods of nonstandard data,
such as voltage jumps, blinks, and muscle noise.
After artifact removal, 93.5% of total trials were available

for analysis. There was no difference in the percentage of
trials removed across conditions, F(2, 56)= 2.09, p= .133.
However, as a product of the experimental design, there
was a difference in the total number of trials between the
conditions, F(2, 56) = 85.2, p < .001, with more reward
trials (μ= 150, ±9) available for analysis relative to execu-
tion error (μ = 114, ±12), t(28) = 12.21, p < .001, and
selection error (μ = 110, ±11), t(28) = 13.89, p < .001,
trials. There was no difference in trial counts for the two
types of errors, t(28) = 0.82, p= .693. To increase the reli-
ability of our conclusions by addressing potential prob-
lems of distribution abnormalities and outliers, averaged
waveforms were constructed for each individual by tak-
ing the bootstrapped (n = 100,000) means from the
EEG time series epochs. The waveforms were baseline
corrected using a 200-msec time window before feed-
back onset.

ERP Quantification

Given that we had specific hypotheses, we focused our
analysis on two locations. First, meta-analyses (Sambrook
& Goslin, 2015; Walsh & Anderson, 2012) have shown the
feedback-locked FRN effect to bemaximal over the fronto-
central region of the scalp. As such, we averaged activity
across three frontocentral electrodes: FC1, FCz, and FC2.
Second, given that the P300 (specifically, the P3b subcom-
ponent) is commonly present in feedback-locked ERPs
and typically maximal over parietal electrodes (Polich,
2007), we averaged over electrodes P1, Pz, and P2. Averag-
ing across electrodes improves the signal-to-noise ratio of
the ERP measures (Oken & Chiappa, 1986).
To test whether our results might be biased by the spe-

cific configurations of electrodes included in the averaged
cluster and use of bootstrapped waveforms, we calculated
the similarity between four different approaches to calcu-
lating the ERPs: (i) grand-averaged activity from the raw
waveforms in the clustered electrodes, (ii) grand-averaged
activity from the bootstrapped waveforms in the clustered
electrodes, (iii) grand-averaged activity from raw wave-
forms from a single electrode (FCz for frontocentral anal-
ysis and Pz for parietal), and (iv) grand-averaged activity
from bootstrapped means extracted from a single elec-
trode. An intraclass correlation coefficient indicated a high
level of agreement between all four approaches (fronto-
central ICC = .995, 95% CI [0.989, 0.997]; parietal ICC =
.996, 95% CI [0.994, 0.997]). Clustered bootstrapped
averaged ERP waveforms are reported here.
With growing evidence that most of the variation in the

FRN is driven by a RewP, we decided to make use of dif-
ference waveforms for our analysis to detect differences
irrespective of whether they were driven by positive or

negative deflections in the ERP (Krigolson, 2018). A differ-
ence waveform procedure has the added benefit of more
easily isolating the FRN from components that precede
(P2) and follow (a large P3 component comprising a fron-
tal P3a and a parietal P3b), eliminating activity in common
between two conditions (Kappenman & Luck, 2017).
Most research on the FRN has typically computed RPE dif-
ference waveforms, derived by subtracting error/loss trials
from reward trials (Sambrook & Goslin, 2015). Here, we
created a “selection error” difference waveform by sub-
tracting the average activity associated with selection
error trials from the average activity related to all reward
trials and an “execution error” difference waveform by
subtracting the average activity associated with execution
error trials from the average activity associated with
reward trials. Finally, we directly contrasted execution
and selection error ERPs by subtracting the execution
error waveform from the selection error waveform to cre-
ate an “error sensitivity” difference waveform. For statis-
tical analysis, the parent waveform outcome trials were
subjected to a one-way ANOVA, and where main effects
emerged, one-sample t tests were conducted to identify
where these difference waveforms were significantly dif-
ferent to zero.

To reduce thenumberof falsepositives (Luck&Gaspelin,
2017), the ERP data were downsampled to 250 Hz and only
activity between 150 and 500 msec (spanning the P2, FRN,
and P3 ERPs) was analyzed. For each analysis, p values were
corrected by applying a false discovery rate control algo-
rithm (Lage-Castellanos, Martínez-Montes, Hernández-
Cabrera, & Galán, 2010; Benjamini & Hochberg, 1995).
The Benjamini–Hochberg correction approach was
adopted as previous studies have shown it to reliably
control the false discovery rate when data are correlated,
even when the number of comparisons is relatively small
(Hemmelmann, Horn, Süsse, Vollandt, & Weiss, 2005).
This method is also ideally suited for the exploration
of focally distributed effects (Groppe, Urbach, & Kutas,
2011).

To aid the interpretation of the difference waveforms,
we first visualized the grand-averaged ERPs related to each
outcome. For every statistically significant contrast, we
present the mean amplitude from the cluster for each par-
ent waveform. Differences between relevant conditions at
each electrode site are also visualized through topograph-
ical maps to support the interpretation of underlying com-
ponents: Predicated on previous research (Walsh &
Anderson, 2012), we anticipated that the FRN should show
a frontocentral topography and, after an early frontocen-
tral peak, there would be a subsequent posterior maxi-
mum corresponding to the P3b subcomponent of the
P300 (Holroyd & Krigolson, 2007).

Brain–Behavior Relationships

A key question in this study is whether electrophysiologi-
cal signatures of different types of outcomes correlate with
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the participants’ choice behavior (see SanMartín, 2012, for
a review). On the basis of a reinforcement learning
account of the FRN (Holroyd & Coles, 2002), we would
expect the amplitude of the FRN to scale with the degree
of behavioral adjustment: Large differences in the FRN
should be more likely to lead to changes in choice behav-
ior compared with small differences in the FRN. Here, we
can ask this question with respect to both selection and
execution errors.

To examine brain–behavior correlations, we calcu-
lated a behavioral adjustment score, or “switch bias”
rate, for each participant (operationalized as the ratio
of the percentage of trials that the participant switched
after an error to the percentage of switching after a
reward). This served as an intuitive index of how much
participants favored one outcome over another. Mean
amplitudes from the statistically significant clusters of
EEG activity were then correlated with these behavioral
adjustment scores.

Rather than signaling a need to switch from one target
to another, feedback from execution errorsmight bemore
readily used to modify a motor plan for future action. To
quantify the magnitude of cursor error, we calculated the
angular deviation of the cursor relative to the center of the
selected target. Hand error was calculated as the position
of the hand relative to the center of the selected target and
was different to cursor error only on trials with perturbed
outcomes. The degree of motor correction was examined
on a subset of data where participants selected the same
target on consecutive trials and quantified as the degree of
angular change in hand position relative to cursor position
on the previous outcome. Mean cursor error and motor
correction scores were correlated with mean amplitudes
from the previously identified statistically significant clus-
ters of EEG activity.

Statistical Analysis

For reporting purposes, time points are rounded to the
nearest millisecond, amplitude (in microvolts) to two dec-
imal places and p values to three decimal places. The range
for the scalp maps was time-interval specific and deter-
mined by the 1st and 99th percentile values across all
electrodes. Spearman’s rho (rs) was used to examine
correlations between amplitude and behavior. For corre-
lations between behavior and neural activity, peak and
mean amplitudes were extracted. Both are reported,
and the strongest correlations are visualized. Where
appropriate, pairs of correlations were directly compared
with Hittner, May, and Silver’s (2003) modification of
Dunn and Clark’s (1969) approach, using a back-
transformed average Fisher’s z procedure as imple-
mented in the R package Cocor v. 1.1–3 (Diedenhofen
& Musch, 2015). The statistical significance threshold
was set at p < .05. Generalized eta squared (ηg

2) is used
as ameasure of effect size for repeated-measures ANOVAs.
This measure was selected over eta squared and partial

eta squared because it provides comparability across
between- and within-subjects designs (Bakeman, 2005;
Olejnik & Algina, 2003); we considered ηg

2 = .02 to be
small, ηg

2 = .13 to be medium, and ηg
2 = .26 to be a large

effect size. All statistical analyses were performed using R
(R Core Team, 2015).

RESULTS

Behavioral Responses

A one-way ANOVA revealed a significant difference in ban-
dit preference, F(2, 56)= 8.27, p< .001, ηg

2 = .23, with par-
ticipants exhibiting bias toward the high execution/low
selection error bandit. Overall, this bandit was chosen, on
average, on 39% (SE = 2%) of the trials, which was signifi-
cantly greater than the low execution/high selection error
bandit (M = 29%, SE = 1%), t(28) = 4.03, p = .001, and
neutral bandit (M = 32%, SE = 2%), t(28) = 2.58, p =
.046, with no difference for the latter two, t(28) = 1.07,
p = .877. Consistent with previous work, when expected
value is equal, the data show that participants prefer
choices in which unrewarded trials are attributed to
errors in movement execution rather than errors in action
selection (Parvin et al., 2018; Green, Benson, Kersten, &
Schrater, 2010; Wu, Delgado, & Maloney, 2009).
We then examined the effect of the different outcomes

on the subsequent choice, asking how they influenced
switching behavior (Figure 2A). Participants exhibited
high switching rates overall (54%), but the rate differed
according to outcome type, F(2, 56) = 10.23, p < .001,
ηg
2 = .11. Switching was highest after selection errors

(M = 66%, SE = 5%) and markedly lower after execution
errors (M = 42%, SE = 5%), t(28) = 5.22, p < .001. This
difference is consistent with the hypothesis that motor
errors attenuate value updating, perhaps because partic-
ipants believe they have more control to correct for exe-
cution errors (Parvin et al., 2018).
Interestingly, switch rates after rewarded trials fell

between the other two outcome types (M = 55%, SE =
6%). There was no difference between switch rates after
reward relative to selection errors, t(28) = 1.85, p =
.227, or execution errors, although the latter approached
significance, t(28) = 2.46, p = .062 (following Bonferroni
correction). The fact that many participants (18 of 29)
were so prone to switching after a rewarded outcome
and even more so (numerically) than after an execution
error was unexpected. The high switching rates would
suggest a bias toward exploratory behavior in this task,
which might have been promoted by the relatively low
rewards and/or the highly probabilistic nature of the out-
comes (Cohen, McClure, & Yu, 2007; Daw, O’Doherty,
Dayan, Dolan, & Seymour, 2006). Notably, there were
very large individual differences in the treatment of the
outcomes: Switch rates ranged from 3% to 98% after
rewards, 7%–99% after selection errors, and 4%–81% after
execution errors.
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ERP Responses

Our primary aim was to examine whether selection and
execution errors could be reliably distinguished in
outcome-locked ERPs. To start, we ran an exploratory 3
(Bandit Type: High Execution/Low Selection Error vs.
Low Execution/High Selection Error vs. Neutral) × 3 (Out-
come: Reward vs. Selection Error vs. Execution Error)
ANOVA at each time point for the frontocentral and parie-
tal clusters. The main effect of Bandit type was not signifi-
cant ( ps≥ .702), and therewas noBandit Type×Outcome
interaction ( ps ≥ .671). Thus, we collapsed across the
three bandits in our primary analyses of the three out-
comes, allowing us to avoid increasing the FWE rate.
The grand-averaged ERPs related to each outcome are

shown in Figure 2B and C. F tests revealed two significant
clusters in the frontocentral region between 156–180 and
210–336 msec and three clusters in the parietal region
(176–196, 218–239, and 355–438 msec). Descriptively,
the first cluster in the frontocentral region was driven by
a delay in the onset of an initial P200-like signal after an
execution error, and the second cluster incorporated
FRN deflections after selection and execution errors, along
with subsequent positive deflections, likely reflecting the
P3a subcomponent of the P300 signal (Polich, 2007). The
early two clusters in the parietal region reflect shifts in
the latency and amplitude of the execution error ERP,
with the third cluster driven by the attenuation of the
P3b subcomponent of the P300 after selection errors.
Figure 3A depicts the selection error difference wave-

form, derived by subtracting the selection error waveform
from reward ERPs for the frontocentral cluster (shown in
Figure 2B), and shows a statistically significant cluster of
time points between 242 and 336msec (one-sample t tests
of the difference wave against zero). An examination of the

scalp topography of the first (242–289 msec) and second
(289–336 msec) half of this window indicated a clear fron-
tocentral maximum in the early phase, followed by a shift
toward centroparietal maximum in the later part of the
window (Figure 3B).

In line with the reinforcement learning account of the
FRN, there was a relationship between neural activity
and behavior. Specifically, amplitude (mean: rs = −.483,
p= .009; peak: rs =−0.36, p= .052; Figure 3C) from the
early part of the cluster (capturing the FRN) negatively
correlated with behavioral adjustment: The larger the dif-
ference waveform (i.e., greater negative deflection for
selection errors relative to rewards), the greater the bias
for the participant to switch to a different bandit after a
selection error outcome relative to a reward outcome. We
note that one participant had a switch rate score of−0.87,
which was 2.97 SDs away from the mean. Rerunning the
analysis without this participant showed a weaker relation-
ship, but the pattern remained statistically significant
(mean: rs = −.39, p = .042; peak: rs = −.34, p = .074).

The topographical map (Figure 3C, inset) demonstrates
that this effect was localized to the frontocentral region.
We found no evidence for such a relationship in the later,
P3a, part of the time window (rs = −.08, p = .672;
Figure 3D). The mean FRN and P3a correlations were mar-
ginally different from one another (z= 1.96, p= .05), pro-
viding support that the FRN, but not the P3a, is a reliable
correlate of behavior change.

Execution Errors

To examine the electrophysiological correlates associated
with unrewarded outcomes attributed to motor execution
errors, we performed similar analyses but now focus on

Figure 2. Behavioral responses and ERP grand averages. (A) Switching rates after the three trial outcomes. Participants were more likely to repeat a
choice (indexed by lower switch rates) after execution errors relative to selection error feedback. Error bars represent ±1 SEM. Feedback-locked
ERPs for each outcome type, recorded from (B) frontocentral and (C) parietal electrode clusters. Zero on the abscissa indicates feedback onset. The
green shaded regions indicate the significant clusters identified in the mass univariate analysis. Pairwise differences in these clusters are visualized in
Figures 3–5 through the comparison of difference waveforms.
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the comparison between execution error trials and reward
trials (the execution error difference waveform—the
result of subtracting the execution error ERP from reward
ERPs in the frontocentral cluster shown in Figure 2B).
This comparison revealed two statistically significant
clusters—one ranging from 156 to 180 msec and a second
between 207 and 325 msec (Figure 4A).

The first cluster showed an amplitude reduction in
response to execution errors relative to reward trials. Sim-
ilar to the selection error waveform result, we expected
the second cluster would be contaminated by a P3a signal.
Thus, we followed the same protocol, splitting this cluster
into two equal intervals: (i) an early phase marked by the
time interval of 207–266 msec and (ii) a later phase for
activity between 266 and 325 msec. There was a clear fron-
tocentral distribution for the early phase and, in the later

time window, a shift toward centroparietal electrodes
(Figure 4B).
We next examined the relationship between these three

epochs (156–180, 207–266, and 266–325 msec) and
behavioral adjustment (Figure 4C and E). The peak ampli-
tude difference in the earliest interval (156–180msec) cor-
related positively (rs = .37, p = .05) with switching rates
after an execution error relative to reward. After execution
errors, smaller peaks in the 156- to 180-msec time window
were associated with a lower tendency to switch. Note that
this pattern is opposite to that observed between the
amplitude of the FRN and behavioral adjustments after
selection errors. The mean amplitude measure had a sim-
ilar pattern of results but was not significant (rs = .35, p=
.065). An examination of topography revealed this correla-
tion to be maximal in the frontocentral cluster, suggesting

Figure 3. Selection error in the frontocentral cluster. (A) The selection error waveform, defined as the difference in the ERPs on trials resulting in
selection errors and rewards. The green shaded regions indicate significant clusters for this contrast, and the gray shaded regions indicate where the
clusters identified in the original time-series analysis did not reach statistical significance for this difference waveform. Zero on the abscissa indicates
feedback onset. (B) Mean amplitudes for the early and late phases of the statistically significant clusters, with insets showing scalp maps of the
distribution of differences across sites for each time interval. Selection error difference waveform amplitude (shown on the ordinate, where negative
values indicate more negative amplitude for selection errors relative to reward) correlated with an increase in the switch bias score (shown on the
abscissa, where positive values indicate more switching after selection errors relative to reward) at a time interval corresponding to the FRN (C), but
not the P3 (D). The insets show scalp maps of the distribution of amplitude differences across sites, revealing a frontocentral maxima for the FRN
correlation.
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that smaller amplitudes in response to execution errors
early in the feedback processing stream are associated
with a higher tolerance to this outcome.
In contrast to the results for selection errors, the FRN

captured in the 207- to 266-msec time window did not cor-
relate with behavioral adjustment (rs = .07, p= .722). We
tested, and confirmed, that this correlation was reliably dif-
ferent to the correlation observed for selection errors in
the FRN time interval (z = 2.40, p = .016). There was no
correlation between the execution error waveform in the
P3a time window (266–325 msec) and behavioral adjust-
ment (rs = −.22, p = .258).
We conducted the same analysis for the execution error

waveform in the parietal cluster of electrodes. Execution
errors elicited smaller amplitude responses relative to
rewards in an early time window (176–196 msec) but elic-
ited larger amplitude responses at 218–239 msec after
feedback. In the later time window, there was a positive
correlation between amplitude and behavior (rs = .47,
p = .01) in the posterior region, suggesting a shift from

frontocentral to parietal regions in the processes driving
behavioral adjustment (Dhar & Pourtois, 2011; Overbeek,
Nieuwenhuis, & Ridderinkhof, 2005). Interestingly, and
unexpectedly, the amplitude of the P3b subcomponent
of the P300 signal—proposed to reflect the revision
of internal forward models in posterior parietal cortex
(Krigolson & Holroyd, 2007a), showed no difference in
the processing of execution errors and rewards (see
Figure 2C), and there was no relationship with behavioral
adjustment (rs = −.01, p = .946).

Error Sensitivity Difference Waveform

As described in the previous two sections, when using a
common baseline (rewarded trials), we observed differ-
ences in both the ERP results and correlational analysis
between unrewarded trials that were attributed to failures
in movement execution or action selection. We per-
formed a direct comparison between these two types of
unrewarded outcomes by analyzing an error sensitivity

Figure 4. Execution error in the frontocentral cluster. (A) The execution error difference waveform, defined as the difference amplitude for
execution error and reward ERPs. The green shaded regions indicate clusters showing statistically significant differences. Zero on the abscissa
indicates feedback onset. (B) Mean amplitudes for the early and late phases of the significant clusters. (C) The execution error difference waveform
amplitude (shown on the ordinate, where positive values indicate larger amplitude for execution errors relative to reward) positively correlated with
an increase in the switch bias score (shown on the abscissa, where positive values indicate more switching after execution errors relative to reward) in
this early time window, but there were no correlations in the later time windows (D and E).
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difference waveform, subtracting the ERP for selection
errors from the ERP for execution errors (see Figure 2B
for the parent waveforms).

In the frontocentral cluster, there was a significant dif-
ference in the range of the FRN (222–250 msec;
Figure 5A and B). We had anticipated that the amplitude
of the FRN would be attenuated after execution errors,
assuming a lower response would be reflective of reduced
value updating (McDougle et al., 2019). However, the
observed effect was in the opposite direction: Execution
errors elicited a larger FRN deflection, relative to selec-
tion errors.

We also examined whether the magnitude of this differ-
ence correlated with the “switch bias” rate. For this mea-
sure, the proportion of switches after execution errors was
subtracted from the number of switches made after selec-
tion errors. Note that these values range from 0 to −0.91,
because of the fact that no participants produced more
switches after execution errors relative to selection errors.
Although the parent waveforms for this correlation are
included in the previous analyses, the EEG activity in
this analysis is specific to the range of 220–250 msec,
the window in which the error outcome ERPs differed
significantly.

There was no relationship between mean amplitude in
this window and switch bias (rs = .23, p= .23). However,
the peak negative amplitude revealed a positive correla-
tion with switch bias (rs = .41, p = .026; Figure 5C). Par-
ticipants who had relatively similar switching rates to the
two unrewarded outcomes had smaller FRN differences,
whereas individuals with a large negative bias (i.e., less

switching after execution errors) also exhibited larger
FRN amplitudes for motor execution errors relative to
selection errors. This correlation was maximal in fronto-
central sites (Figure 5C, inset).
Examining the parietal cluster revealed no differences in

the earliest interval (176–196msec). However, differences
emerged in the 218- to 239-msec and 359- to 445-msec
epochs, with larger positive amplitudes for execution
errors relative to selection errors. The mean amplitude
across each of these clusters (218–239 and 359–445 msec)
was not correlated with the behavioral adjustment scores
(rs ≤ .179, ps ≥ .352).

Kinematic Analysis

To gain a deeper understanding of the relationship
between brain activity and task performance, we examined
correlations between task kinematics and the statistically
significant periods identified in the time series analysis
in the frontocentral and parietal difference waveforms.
We reasoned that, in contrast to selection errors, where
there was a relationship between FRN amplitude and
choice selection, the execution error FRN may instead
be encoding information about cursor position and sub-
sequent movement correction.
In the first analysis, we examined whether there was a

relationship between cursor error (the presented position
of the cursor shown to participants at the end of themove-
ment) magnitude and ERP activity. There were no reliable
correlations between the mean activity of the statistically
significant clusters in the difference waveforms and

Figure 5. Error processing differences in the frontocentral cluster. (A) The error sensitivity difference waveform, calculated by subtracting ERPs for
selection error from execution error ERPs. The green shaded region indicates the single cluster in which there was a significant difference for this
contrast, and the gray shaded regions indicate where the clusters identified in the original time-series analysis did not reach statistical significance in
this comparison. Zero on the abscissa indicates feedback onset. (B) Mean amplitudes for the early and late clusters indicated by shaded regions in A.
Inset scalp maps show topographical distribution for each cluster. (C) Peak amplitude difference in the FRN (shown on the ordinate, where negative
values indicate a larger negative deflection for execution errors relative to selection errors) correlated with a larger switch bias score (shown on the
abscissa, where larger negative values indicate more switching after selection error relative to execution error). Note that no participants showed
higher rates of switching after execution error relative to selection error. This correlation shows that, as the similarity in the behavioral response to
execution and selection errors increased, amplitude differences in the processing of execution and selection errors decreased.
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corresponding differences in cursor error magnitude
(execution error: rs ≤ .228, ps ≥ .233; selection error:
r ≤ .176, ps ≥ .359; error sensitivity: rs ≤ .152, ps ≥ .429).
In the second analysis, we asked whether ERP ampli-

tude on the current trial would correlate with the degree
of motor correction on subsequent trials. Here, we
restricted analysis to the subset of trials in which partici-
pants chose the same target consecutively. The amount
of motor correction in response to feedback (computed
as the mean absolute change in end-point veridical hand
position relative to the cursor position on the previous
trial), varied as a function of Feedback, F(2, 56) = 75.37,
p< .001, ηg

2 = .66. As both outcomes indicated a success-
ful movement, we expected, and found, no difference,
t(28) = 0.47, p> .999, in the subsequent degree of correc-
tion for selection error (M= 3.73°, SE= 0.15°) and reward
(M= 3.64°, SE= 0.17°) trials. In contrast, execution error,
signaling a need to change one’s motor response to hit the
target (M= 6.53°, SE= 0.22°), had higher rates of correc-
tion relative to both selection error, t(28) = 8.95, p< .001,
and reward, t(28) = 8.95, p < .001, outcomes. Despite
these behavioral differences, there were no correlations
between mean activity of the statistically significant clus-
ters in the difference waveforms and relative differences
in themagnitude of subsequentmotor corrections (execu-
tion error: rs ≤ −.239, ps ≥ .211; selection error: rs ≤
−.328, ps ≥ .083; error sensitivity: rs ≤ .152; ps ≥ .429).
To ensure that we did not miss any potential sensitivity

to task kinematics in other time ranges, we undertook an
exploratory search of the full time series data by correlat-
ing cursor error and motor correction with mean ampli-
tude from 150 to 500 msec.
We found no correlations between ERP difference wave-

forms and cursor error in the frontocentral ( ps ≥ .45) or
parietal ( ps≥ .75) sites after correction.We also note, with
a degree of caution given the corrected p values were not
significant, that there was one statistically significant pat-
tern before correction—a positive correlation between
the error sensitivity difference waveform and cursor error
(rs = .43, 406 msec). In correlating motor correction rates
with ERP amplitude, we found no significant relationships
in the frontocentral cluster ( ps ≥ .454). Here, we noted
that the strongest relationship (rs = .456) was a positive
one between motor correction and the error sensitivity
difference waveform at 164 msec—a pattern that was sus-
tained across 156–174 msec. As participants made larger
degrees of correction after execution errors relative to
selection errors, they also exhibited greater amplitude.
In the parietal cluster, we found no reliable patterns of
activity after ( ps ≥ .97) or before ( ps ≥ .1) correction.

Perturbation Awareness

In a final set of explorations, we examined whether partic-
ipants were sensitive to the feedback manipulation that
had been applied to control the frequency of our three
outcomes. In almost half the trials (M = 47.8%, SE =

0.01%), we delivered perturbed instead of veridical feed-
back (M = 52.2%, SE = 0.01%). We had taken measures
tominimize the likelihood of participants becoming aware
of these changes (e.g., no online movement feedback was
provided, and end-point feedback was presented 1 sec
after the stylus had passed the bandit), and in a postexperi-
ment survey, participants indicated that they believed
execution error outcomes to be the result of poor
reaches, suggesting no explicit awareness of the manipu-
lation. Nevertheless, we did find differences in cursor
error (Figure 6A), as revealed through a 3 (Outcome:
Reward vs. Selection Error vs. Execution Error) × 2
(Veracity: Veridical vs. Perturbed) interaction, F(2,
56) = 27.4, p < .001, ηg

2 = .25. In all cases, cursor error
was largest in the veridical trials, but the effect was greatest
for reward (veridical: M = 1.68°, SE = 0.02°; perturbed:
M = 0.98°, SE = 0.01°), t(28) = 26.83, p < .001, and
selection error (veridical: M = 1.72°, SE = 0.02°; per-
turbed: M = 0.97°, SE = 0.02°), t(28) = 30.95, p < .001,
outcomes, with differences of 0.7° and 0.75°, respectively.
For Execution error, there was a visual difference of
0.27° (veridical: M = 5.99°, SE = 0.07°; perturbed: M =
5.72°, SE = 0.04°), t(28) = 3.5, p = .045.

In examining hand error (position of the hand relative
to the center of the target), we found a Veracity × Out-
come interaction, F(2, 56) = 4770.99, p< .001, ηg

2 = .981
(Figure 6B). Veridical execution error trials (M = 5.99°,
SE = 0.07°) were not statistically significantly different
to perturbed selection error (M = 5.90°, SE = 0.07°),
t(28) = 1.08, p = .886, and perturbed reward (M =
5.93°, SE = 0.07°), t(28) = 1.09, p = .881, trials. Similarly,
there was no difference in hand error for perturbed execu-
tion error trials (M = 1.75°, SE = 0.02°) compared with
veridical selection error (M = 1.72°, SE = 0.02°), t(28) =
0.998, p = .915, and veridical reward (M = 1.68°, SE =
0.02°), t(28) = 2.41, p = .188, trials.

Participants did not alter their behavioral strategy in
response to feedback perturbations (veracity: F(1, 28) =
0.899, p = .351, ηg

2 < .01; Veracity × Outcome: F(2,
56) = 1.42, p = .251, ηg

2 < .01; Figure 6C). However, a
suggestion that they might have been implicitly sensitive
to these differences is indicated by the degree ofmotor cor-
rection after veridical and perturbed feedback (Figure 6D).
One participant had no stay trials after perturbed feed-
back in this subset of data and was excluded from this
analysis. In the remaining participants, we observed an
Outcome × Veracity interaction, F(2, 54) = 4.49, p =
.016, ηg

2 = .04. There were no differences in the degree
of motor correction after execution error (veridical:
M = 6.3°, SE = 0.19°; perturbed: M = 6.84°, SE = 0.32°),
t(27) = 2.07, p = .718, but greater corrections (reward:
veridical, M = 2.92°, SE = 0.13°; perturbed, M = 4.28°,
SE = 0.26°; t(27) = 4.56, p < .001; selection error: verid-
ical, M = 3.02°, SE = 0.20°; perturbed, M = 4.62°, SE =
0.17°; t(27) = 6.30, p < .001) after false hits’ trials. These
positively surprising outcomes (real reaches had missed
the target on these trials, hence the perturbation) may
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have prompted overcompensation as participants sought
to calibrate their movements to task feedback.

Given these differences, we explored the extent to
which the ERP signal was sensitive to the veracity of the
feedback. We reran the ERP time-series analysis, perform-
ing a 3 (Outcome: Reward vs. Selection Error vs. Execution
Error) × 2 (Veracity: Veridical vs. Perturbed) at each time
point for the frontocentral and parietal clusters. There
were no statistically significant main effects of veracity
(Fs ≤ 6.99, ps ≥ .397) and no Outcome × Veracity inter-
actions (Fs ≤ 2.55, ps ≥ .79) in the frontocentral cluster
and, similarly, no main effects (Fs ≤ 5.42, ps ≥ .853) or
Veracity × Outcome interactions (Fs ≤ 1.83, ps ≥ .986) in
the parietal cluster.

We then exploredwhether there were any differences in
the relationship between ERP activity and kinematic

adjustment as a function of feedback veracity. As per-
turbed feedback elicited larger corrective movements
than veridical feedback, we speculated that an ERP signal
sensitive to positive surprise may scale in response to this
behavior for selection and execution error trials. To
explore this idea, a difference wave subtracting perturbed
ERP amplitude from veridical was computed. The ampli-
tude of this “perturbation difference” waveform was cor-
related with (i) the mean difference in cursor error for
veridical and perturbed feedback per outcome and (ii)
the mean difference in degree of correction after veridical
relative to perturbed feedback per outcome.
In analyzing the relationship between the perturbation

difference waveform and cursor error in the frontocentral
cluster, we found no correlations that survived correction
for multiple comparisons ( ps ≥ .616). However, in the

Figure 6. Feedback
perturbation and awareness.
(A) Cursor error was larger for
veridical feedback relative to
perturbed. (B) There was no
difference in the magnitude of
hand error for perturbed
selection and reward error
trials relative to veridical
execution error trials and no
difference between perturbed
execution error trials compared
to veridical selection error and
reward trials. (C) Despite
smaller cursor error,
participants made larger
corrections in response to
perturbed feedback, with the
pattern most pronounced for
false hits. (D) Perturbed
feedback did not impact on the
likelihood of switching bandits.
(E) Amplitude differences
between perturbed and
veridical feedback in the
parietal cluster for selection
errors at 273 msec (shown on
the ordinate, where positive
values indicate larger amplitude
for veridical relative to
perturbed outcomes)
correlated with magnitude of
the difference in cursor error
for these outcomes (shown on
the abscissa, where positive
values indicate larger veridical
cursor errors relative to
perturbed). deg = degrees.
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parietal cluster, the selection error waveform strongly
correlated with perturbation difference amplitude at
273 msec (rs = −.62, p = .011; Figure 6E), indicating a
sensitivity to discrepancies between actual and pre-
sented hand position. Specifically, this correlation shows
that, for participants with larger veridical errors, per-
turbed feedback elicited larger positive amplitudes in
a manner consistent with the P300 signaling surprise
(Nassar, Bruckner, & Frank, 2019; Donchin, 1981).
The error sensitivity difference waveform showed a sim-
ilar pattern but did not reach the significance threshold
after correction (rs = −.47 at 343 msec). The pattern
for execution error was reversed, with the strongest cor-
relation observed later (rs = .45 at 492 msec)—with
amplitude highest when both cursor error and amplitude
were higher in the veridical condition relative to the per-
turbed condition. However, this too was not significant
after correction.
In terms of the relationship between perturbation

amplitude differences and the degree ofmotor correction,
there were no significant effects in the frontocentral ( ps ≥
.120) or parietal ( ps ≥ .82) clusters. With the same note of
caution for nonsignificant correlations offered above, two
patterns suggest a further dissociation in the processing of
selection and execution errors: In the time frame of the
FRN, there was a relationship between frontocentral
amplitude of the perturbation difference waveform and
motor correction (rs =−.542 at 289 msec). Here, greater
corrective movements in response to perturbed feedback
correlated with larger differences in the FRN, and (ii) later
in the window, the perturbation difference waveform
for execution errors positively correlated (rs = .52 at
335 msec) with the degree of motor correction, indicat-
ing that larger cursor error corrections in response to
perturbed feedback have correspondingly larger ampli-
tudes for perturbed feedback in the time range of the
P3a. Despite the finding that selection error, like reward,
resulted in adaptation after perturbed relative to veridical
outcomes, no relationship was observed, with the stron-
gest effect at 420 msec (rs = −.299).
Finally, as an alternative to averaging over perturbed

and veridical trials, we correlated the degree of perturba-
tion on a single trial, computed as the difference between
hand error and cursor error (which was zero on veridical
trials, a positive value on trials where the cursor was shown
to be closer to the target than the hand position, and a neg-
ative value when the cursor position was shown to be fur-
ther away from the target relative to hand position), with
amplitude in the frontocentral and parietal clusters at each
time point in the ERP per outcome for every participant.
We did not find any general patterns to indicate a sensitiv-
ity to perturbationmagnitude. In the frontocentral cluster,
one participant showed a positive correlation between
perturbation and the processing of reward (between
152–172 and 254–289 msec), another showed a correla-
tion for execution error trials (between 70–86, 110–137,
188–204, and 289–500 msec), and two participants

showed positive correlations for selection error. The first
had a positive correlation between 453 and 457 msec, and
the second had a positive correlation in multiple clusters
across the whole time series (between 4–11, 31–90, 117–
188, 258–277, and 460–477 msec). In the parietal cluster,
no relationships emerged for reward or execution error,
with two participants showing positive correlations
between the degree of perturbation and the processing
of selection error: one between 340 and 356 msec and a
second participant between 289–317 and 382–500 msec.

DISCUSSION

Adaptive behavior necessitates distinguishing between
outcomes that fail to produce an expected reward because
of either the selection of the wrong action plan or poor
motor execution. Although most decision-making
research, in neuroscience as well as economics, have
focused almost exclusively on the former, a few studies
have shown that failed outcomes attributed to sensorimo-
tor errors can markedly bias choice behavior (McDougle
et al., 2016, 2019; Green et al., 2010). Here, we examined
this issue by asking how an ERP signature of reinforcement
learning, the FRN/RewP, varied in response to selection
and motor errors. Predicated on the theory that the FRN
is a scalp-related prediction error (Holroyd &Coles, 2002),
we tested the hypothesis that errors attributed to failures
in execution should lead to an attenuation in the FRN.

Consistent with our expectations, selection errors elic-
ited a larger FRN relative to reward outcomes. Moreover,
in line with a reinforcement learning account, the ampli-
tude of the FRN after selection errors was negatively cor-
related with the probability that participants switched
between the response options after feedback. Behavior-
ally, participants showed lower switch rates after execu-
tion errors, a pattern consistent with the hypothesis that
the reinforcement learning system discounts these errors
(McDougle et al., 2019). However, contrary to the predic-
tion that FRN amplitude would be attenuated after execu-
tion errors, these errors actually produced the largest FRN.
A striking difference between the ERPs in response to
selection and execution errors was that the amplitude of
the FRN after selection errors was predictive of behavioral
biases and learning, whereas this ERP response after exe-
cution errors did not correlate with these variables.

Although almost all participants were more likely to
switch after a selection error compared with an execution
error, the differential response (i.e., difference in switch
rates) to these two error outcomes varied considerably
across participants. Moreover, this behavioral difference
was correlated with the neural response to the two types
of feedback: The more similarly participants treated the
two outcomes at a behavioral level, the smaller the differ-
ence in FRN amplitude in response to these outcomes.

These findings could be reconciled by considering the
top–downmechanisms that may modulate how execution
errors are processed. Behavioral experiments have shown
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that a sense of agency related to the perceived ability to
correct for motor errors biases choice behavior (Parvin
et al., 2018). In the present experiment, the finding that
participants persevered with a bandit after execution
errors but switched more often after selection errors also
points toward differences in agency. Previous work on the
FRN has shown that outcomes that can be controlled lead
to a more negative FRN than those that cannot (Sidarus,
Vuorre, & Haggard, 2017) and the FRN is attenuated
in the absence of actively performed actions (Donkers,
Nieuwenhuis, & van Boxtel, 2005; Donkers & van Boxtel,
2005). The finding that execution errors produced a
larger FRN relative to selection errors is consistent with
the presumed greater sense of agency associated with
this type of unrewarded outcome.

A recent fMRI experiment using a three-arm bandit task,
similar to that employed here, revealed an attenuation of
the signal associated with negative RPE in the striatum
after execution failures (McDougle et al., 2019). Our obser-
vation of a larger negative deflection for execution error
trials in the FRN may appear contrary to these previously
reported striatal results. However, the fMRI investigation
did show increased ACC activity in response to execution
errors compared with selection errors, suggesting that the
former have their own neural signature.

With regard to the EEG response, there have been a
number of studies reporting FRN deflections in response
to execution error (Torrecillos et al., 2014; Anguera et al.,
2009; Krigolson et al., 2008). These studies, in line with the
prediction–response outcome model of medial frontal
cortex function (Alexander & Brown, 2011), point to the
existence of a general monitoring system that responds
to violation of expectations. However, an important aspect
of these tasks is that errors in movement execution typi-
cally resulted in high-level goal errors (e.g., failure to reach
or remain on target in a manual tracking task) and/or
involved the introductions of perturbations during the
movement phase (Krigolson et al., 2008). Thismakes it dif-
ficult to rule out the contribution of cognitive control and
response inhibition processes, which are known to gener-
ate an N200 component that shares similar spatial and
temporal characteristics to the FRN signal (Holroyd
et al., 2008; Holroyd, 2004). A recent study separating
reward and sensory prediction errors in a motor adapta-
tion task showed that the FRN responds to the former,
but not the latter (Palidis et al., 2019). The present
findings, indicating qualitatively different relationships
between the two medial frontal negativities with behav-
ioral modification, add weight to the possibility that
execution error processing may be distinct from
dopamine-related reinforcement learning processes.

We also observed two distinct patterns of activity in time
windows preceding and after the FRN that provide further
support for the claim of differential processing of execu-
tion and selection errors. First, smaller amplitude
responses were observed after execution errors relative
to rewards in frontocentral sites 156–180 msec after

feedback, and the amplitude of this component correlated
with switch rates. Second, in parietal sites (218–239msec),
larger amplitude responses occurred after execution
errors relative to reward, and this difference was also cor-
related with switch rates. Importantly, in a reversal of the
FRN pattern, magnitude differences in these early fronto-
central and late parietal signals correlated with behavioral
adjustment linked to execution errors. This pattern
points toward the existence of distinct error monitoring
systems operating at different levels of behavioral control
(Yordanova, Falkenstein, Hohnsbein, & Kolev, 2004).
Exploratory analysis on the relationship between ERP

amplitude and task showed that the degree of motor cor-
rection after execution errors relative to selection errors
correlated with amplitude differences in an early fronto-
central cluster (156–174 msec). The time course of this
cluster closely mirrored that of the earliest difference
between execution error and reward—where amplitude
differences correlated with switch rates. Given that we
had no a priori expectations for such a result and that this
specific result did not survive correction for multiple com-
parisons, interpretations must be treated with caution and
require further robustly powered replication work to con-
firm. Should future work replicate this pattern, it would
add weight to the idea that the need to make a behavioral
modification after an error in the motor system precedes
the generation of the FRN.
A pertinent question of the present task and data is the

extent to which participants were aware of the perturba-
tions applied to the feedback to control outcome frequen-
cies. Participants did not have access to online feedback,
and end-point cursor information was presented with a
1-sec delay to minimize the likelihood of participants
becoming aware of the perturbations. In a postexperiment
survey, participants indicated that they had attributed exe-
cution errors to poor motor control. Consistent with this,
we found that during the task, perturbed feedback did not
alter choice strategy, nor did it result in any significant dif-
ferences in the ERP. However, participants did, on aver-
age, make larger corrective movements after perturbed
feedback—this was despite these outcomes showing
smaller cursor errors than veridical feedback. In explor-
atory analysis, we did not find any relationships between
amplitude and perturbation magnitude at a trial level for
most of the participants, but we did find a correlation
between amplitude differences and cursor error when
averaging across perturbed and veridical trials. This corre-
lationmanifested in the parietal cluster at 273msec, which
likely reflected the onset of the P300. Here, the positive
amplitude of this signal reduced as the amount of veridical
error increased. That the P300 shows sensitivity to discrep-
ancies between actual and presented hand position is con-
sistent with the theory that the signal is generated through
the active updating of an internal model of the environ-
ment (Donchin & Coles, 1988). The P300 is also notable
for being a putative marker of conscious perception
(Rutiku, Martin, Bachmann, & Aru, 2015). If participants
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did indeed have access to this information during the task,
it may be that these perturbations were not sufficiently
large enough to signal a need to change strategy.
These findings also raise a broader question of whether

the present results might be specific to outcomes that are
framed as execution errors or extend to any endogenous
or exogenous event that results in an unrewarded trial in
which the outcome does not provide information about
the reward probability associated with the selected object
(Green et al., 2010). For example, if an unexpected gust of
wind blew a tennis lob out-of-bounds, would that be
treated as an “execution error”? Or, if after pulling the lever
on a slot machine, a power failure caused the game to ter-
minate without a payoff, would this affect how the choice
is judged? A future study could test endogenous execution
errors (e.g., reaching error) and exogenous errors (e.g.,
the task screen goes blank randomly before an outcome
is delivered) more explicitly than the perturbations
applied here. If similar results are found in both settings,
elements of the early activity observed in frontocentral
sites may indicate the establishment of a sensory “state,”
representing that the intended action plan was not prop-
erly implemented, irrespective of whether this mismatch
was because of endogenous or exogenous factors, even
before the prediction error is evaluated. This echoes the
sequential ordering in models of temporal difference
learning, where first the agent perceives its state and then
computes RPEs relevant to that state (Sutton & Barto,
1998).

Limitations and Future Directions

Although we have hypothesized that execution errors
impact choice behavior, either by attenuating the opera-
tion of reinforcement learning processes or via an
enhanced sense of agency, it is also important to consider
alternative hypotheses. In the behavioral data, we
observed a high base rate for switching between bandits.
The highly probabilistic nature of the outcomes, coupled
with the relatively low reward rate increased, made the
task of determining the optimal choice difficult (although
each bandit has different frequencies of execution and
selection errors, they all had the same expected value).
This may have biased participants toward an exploration
strategy to reduce uncertainty by focusing on gathering
more information about the reward likelihood of each
bandit for later exploitation (Cohen et al., 2007; Daw
et al., 2006). Viewed in this way, repetition of target selec-
tion after execution errors might not be because of
increased agency or RL discounting butmay instead reflect
a failure to acquire information on the reward probability
of the chosen target on the previous trial and a drive to
reduce uncertainty. Future work could disentangle these
explanations by, for instance, assigning a lower expected
value to high execution/ low selection error bandits
and/or through the presentation of fictive outcomes for
motor errors.

Conclusion

We observed a robust FRN in response to both selection
and execution errors, but only the former correlated with
behavioral adjustment. In contrast, the amplitude of a pos-
itive deflection in the ERP, both before and after the FRN,
correlated with choice behavior after execution errors.
These results indicate a need for a more nuanced interpre-
tation of what the FRN represents and how it may be
shaped by contextual information. More generally, the
results provide insight into how the brain discriminates
between different classes of error to determine future
action.
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