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Abstract
Significance. Noninvasive brain stimulation (NIBS) by quasistatic electromagnetic means is
presently comprised of two methods: magnetic induction methods (transcranial magnetic
perturbation or TMP) and electrical contact methods (transcranial electric perturbation or TEP).
Both methods couple to neuronal systems by means of the electric fields they produce. Both
methods are necessarily accompanied by a scalp electric field which is of greater magnitude than
anywhere within the brain. A scalp electric field of sufficient magnitude may produce deleterious
effects including peripheral nerve stimulation and heating which consequently limit the spatial and
temporal characteristics of the brain electric field. Presently the electromagnetic NIBS literature
has produced an accurate but non-generalized understanding of the differences between the TEP
and TMP methods. Objective. The aim of this work is to contribute a generalized understanding of
the differences between the two methods which may open doors to novel TEP or TMP methods
and translating advances, when possible, between the two methods. Approach. This article employs
a three shell spherical conductor head model to calculate general analytical results showing the
relationship between the spatial scale of the brain electric fields and: (1) the scalp-to-brain
mean-squared electric field ratio for the two methods and (2) TEP-to-TMP scalp mean-squared
electric field ratio for similar electric fields at depth.Main results. The most general result given is
an asymptotic limit to the TEP-to-TMP ratio of scalp mean-squared electric fields for similar
electric fields at depth. Specific example calculations for these ratios are also given for typical TEP
electrode and TMP coil configurations. While TMP has favorable mean-squared electric field ratios
compared to TEP this advantage comes at an energetic cost which is briefly elucidated in this work.

1. Introduction

The neuronal tissue of the brain can be perturbed
noninvasively by the application of an electric field
generated by two means: magnetic induction and
electrical contact [1, 2]. The magnetic induction
method uses a time varying current within coils
external to the head, and not in electrical contact with
the head, to produce a time varying magnetic field
within the brain. This time varying magnetic field
induces an electric field in the electrically conduct-
ive head. The electric contact method uses a source
of current and electrodes in contact with the head
to produce an electric field within the brain. Regard-
less of which method is used, the electric field is

stronger in the scalp than in the brain. Therefore,
when designing new systems to perturb brain func-
tion, it is of considerable importance to understand
with some generality the characteristics of the brain
and scalp electric fields of each method. In addition
it is important for the researcher to understand the
energetic costs of generating electric fields by each
method.

Here the electric contact method will be referred
to as transcranial electric perturbation (TEP) and
the magnetic induction method will be referred to
as transcranial magnetic perturbation (TMP). There-
fore TMS (transcranial magnetic stimulation) [1],
which is an induction method that employs brief
(approximately 250 µs) and possibly intense pulses
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(requiring as much as 6 kA of coil current) capable of
producing suprathreshold electric fields (greater than
40 Vm−1) within the brain, is a TMP method. Sim-
ilarly TES (transcranial electric stimulation) [3, 4],
which is a electric contact method that employs
sustained (300–1800 s) subthreshold electric fields
(approximately 0.5 Vm−1) generated from relatively
small contact currents (typically up to 2.0 mA in
the DC–kHz range) or electroconvulsive therapy [5],
which is an electric contactmethod that employs brief
pulses (0.2–2.0 ms) delivered as a train of brief pulses
(0.2–1.0 ms square wave pulse, 20–240 pulses s−1,
⩽8 s total duration) using contact current amplitudes
in the range of 100–900 mA, are both TEP methods.

Regardless of the method used the resulting elec-
tric field couples to neurons and may perturb their
state in a short or long term manner. When the elec-
tric field is suprathreshold, robust effects such as spik-
ing and electrical nerve blocking [6] can be elicited
with kHz continuous waveforms. When the electric
field is subthreshold effects such as entrainment [7, 8]
and motor threshold changes [9, 10] can be elicited.
The dynamics of the coupling of the applied elec-
tric field to any given neuron can be described by
equations that predict the change in the neuron’s
transmembrane potential (the output) which are in
general nonlinear with respect to the applied electric
field (the input) [11]. If the electric field amplitude is
much smaller than threshold then the electrodynam-
ics of the neuronal system can often be described by a
linear relationship between the input electric field and
the output transmembrane potential. As the input
amplitude increases the linear approximations will
fail and nonlinear relationships must ultimately be
employed.

Most TEP and TMP modeling employs the finite
element method in conjunction with volume con-
ductor models built frommagnetic resonance images
[12–16] to estimate the electric field within the head.
However such detail is not necessarily needed or even
desirable when trying to establish general physical
and engineering principles associated with the TEP
and TMP methods. In fact, when making compar-
isons between these methods, numerical calculation
of electric fields generated by specific TEP electrode
geometries or specific TMP coil geometries can miss
general principles, like those described in the body
of this paper, which are obtainable through analytical
calculations.

The work herein makes clear, in a general man-
ner, that the choice between the TEP or TMP meth-
ods depends primarily upon the temporal and spa-
tial characteristics of the desired electric field as well
as the energy consumption of the respective current
sources. With respect to the electric field spatial char-
acteristics it is shown that the TEP and TMPmethods
differ fundamentally with respect to the electric field
subspaces they span and the scalp-to-brain power dis-
sipation ratios they produce. All other differences,

such as field focality, follow from these two general
differences.

To compare the feasibility, benefits and trade-offs
of TEP versus TMP electric fields a detailed model of
the electric field established in the human head is not
needed. Detailedmodels are important for estimating
electric field dosing [17, 18] but are unnecessary to
elucidate and compare general design and feasibility
issues concerning the TEP andTMPmethods. Instead
it suffices to employ a spherical headmodel which can
yield generic comparisons of the brain versus scalp
electric fields. To make such comparisons it is help-
ful to have a single number for each region of the
head to characterize the ‘distance’ between the elec-
tric field in that region and the zero electric field. In
other words, this single number should behave as a
mathematical norm for the electric field in a region.
Any norm has three properties: it is nonzero except
when the field is zero, it scales linearly with the scal-
ing of the field and it obeys the triangle inequal-
ity expected of any distance metric. Many norms for
a field exist. For example the absolute value norm
(L1 norm), the Euclidian norm (root-mean-square
norm or L2 norm) and the maximum norm. The
root-mean-square norm is particularly useful because
it is analytically easier to manipulate than the other
norms. Additionally, as will be seen, this choice of
the norm does not require a unique determination of
the electric fields whenmaking comparisons between
similar TEP and TMP fields as would be necessary for
meaningful comparisons using the maximum norm.

Throughout this paper comparisons will be made
between TEP and TMP electric fields using the root-
mean-square or mean-squared norms within the
brain and scalp regions. These particular norms are
useful proxies for the electric field magnitude and the
absorbed power respectively. These quantities are of
great experimental consequence since the amplitude
of the scalp electric field may limit the safely obtain-
able amplitude of the cortical electric field. Indeed,
scalp peripheral nerve stimulation (which can range
from distracting to painful) scales with root-mean-
square electric field amplitude while scalp heating
(which can range from benign to burning) scales
with mean-square electric field amplitude. Note that
since the conductivities of the brain and scalp regions
are comparable and often assumed to be equal, as is
often the case in three-shell models, then the scalp-
to-brain power dissipation ratio is equivalent to the
scalp-to-brain mean-squared electric field ratio. Also
note that most extant quasistatic EM noninvasive
brain stimulation (NIBS) methods are limited by
peripheral nerve stimulation rather than tissue heat-
ing. However, this may not apply to future methods
inwhich electric field amplitude, frequency (although
still quasistatic) and duration of the perturbing wave-
forms could be increased.

To present the differences between TEP and TMP
electric fields in a clear manner a three-shell head
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model is employed and solved analytically. In this
model the head is assumed to consist of three con-
centric spherically symmetric regions of differing
conductivities which adequately represent the elec-
tromagnetic properties of the scalp, skull and brain.
Vector spherical harmonics [19] are used to describe
the TEP and TMP electromagnetic fields and sources
of current. This is a natural choice for the vector fields
given the spherical geometry of the model.

Most of the earlier treatments of the electric field
within a spherically symmetric conductor did not
make use of vector spherical harmonics and as a res-
ult the derivations were somewhat long and cum-
bersome [20]. The authors know of only two pub-
lications [21, 22] (articles concerned with TMS coil
design) which make use of vector spherical harmon-
ics in the treatment of such problems. However, scalar
spherical harmonics have been used in the analytic
solution of the three-shell TEPmodel [23] albeit with
skull, cerebrospinal fluid (CSF) and brain as the three
compartments of the model. That publication noted
that the results of their calculations were only slightly
dependent upon the conductivity and thickness of the
CSF hence that compartment is not included in the
present work. Here, for the first time, vector spher-
ical harmonics are used to describe both the TMP and
TEP electric fields thereby allowing for a direct com-
parison of the respective electric fields and proper-
ties.While these solutions will be used in this paper to
establish general properties of the TMP and TEP elec-
tric fields it is important to stress that they will also be
of importance to future general work requiring these
solutions as input to dynamical calculations such as,
for example, the evolution of the head temperature
distribution. A real head will of course not be spher-
ically symmetric nor will it be precisely separable into
only three regions of differing electric conductivity,
however the general principles and estimates estab-
lished in this work apply approximately to more real-
istic models as well.

This paper is organized as follows: In section 2
the three-shell model is solved for the electric field
in the three regions modeling the scalp, skull and
brain. Briefly the spatial differences between the TEP
and TMP electric fields are mentioned. In section 3
the quantities RTEP, RTMP and R are calculated. The
quantitiesRTEP andRTMP are the scalp-to-brain ratios
of power dissipation for the TEP and TMP cases
respectively whereas R is the TEP-to-TMP ratio of
scalp energy dissipation for the case of similar TEP
and TMP electric fields at the radial position of the
cortex. Example calculations of each ratio are given
for the case of typical electrode and coil geomet-
ries. The energetic cost of generating an electric field
within the brain depends upon the method used.
Therefore section 3.5 presents a simple analysis of the
power utilization of TEP and TMP current sources.
In this manner a more complete picture of the bene-
fits and costs of each method can be understood. The

r0

r1

r2

σ0

σ1

σ2

region 0

region 1

region 2

Figure 1. The three-shell spherical head model in which the
regions from outermost to innermost are the scalp, skull
and brain respectively. Typical estimates for three shell
model radii are r0 = 80 mm, r1 = 86 mm and r2 = 92 mm
whereas typical estimates σ0 = σ2 and ϵ= σ1/σ0 = 1/80.
Note that only the ratio ε, rather than the specific values of
the conductivities, is of importance in this work since the
focus is on the calculation of mean-squared electric
field ratios between the brain and scalp regions. The
mean-squared electric field is a single number proxy for the
energy dissipation in a region whereas it is square root is a
single number proxy for the electric field amplitude in a
region.

paper ends with a discussion of future methods that
could potentially take advantage of the benefits of
TMP albeit at a cost in power utilization and requir-
ing new designs for TMP coil cooling systems.

2. Methods

The electric fields of TEP and TMP, from which all
results herein will be obtained, were derived by solv-
ing the quasistatic Maxwell Equations in terms of a
vector spherical harmonic representation. Figure 1
depicts the three-shell spherical head model which
will be used in the derivation of the TEP and
TMP electric fields. The spherical head of volume
V consists of three conducting spherical shells in
which the regions from outermost to innermost are
the scalp (region 2), skull (region 1) and brain
(region 0) respectively with scalar conductivities σi

(i= 0, 1, 2). Reasonable estimates for the radii of the
three shell model corresponding to human anatomy
are r0 = 80 mm, r1 = 86 mm and r2 = 92 mm [24].
Typical values of the conductivities which will be used
here are such that σ0 = σ2 and σ1/σ0 = 1/80 [25]
although, for sake of generality, these values will not
be enforced initially.

In TMP the electric field arises from a current
density J(x, t) within a coil, supported external to V
only, driven by a current source. In TEP the electric
field arises from an electric current density J(x, t) in
electrical contact with the external boundary of the
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scalp region. Regardless of the method the electric
field is given (in the Gaussian system of units) at all
positions x and times t by [26]:

E(x, t) =−∇Φ(x, t)− 1

c

∂A(x, t)

∂t
(1)

where Φ is the scalar potential and A is the vector
potential. It will be convenient in this work to use the
nondimensional position vector r= x/r2. The elec-
tric field is then given everywhere by:

e(r, t) =− 1

r2
∇φ(r, t)− 1

c

∂a(r, t)

∂t
(2)

where the derivatives of the ∇ operator are with
respect to the components of r and where the field
quantities are given by e(r, t) = E(rr2, t), φ(r, t) =
Φ(rr2, t), a(r, t) = A(rr2, t) and j(r, t) = J(rr2, t).

Given the frequencies of interest (less than
100 kHz) we will make the usual quasistatic approx-
imations (see [27] for nuance concerning the quasi-
static approximation). Under these approximations:
(1) the scalar potential φ within V obeys Laplace’s
equation ∇2 φ= 0, (2) polarization and magnetiza-
tion currents can be ignored so that the currentwithin
V is Ohmic only (j(r, t) = σ(r)e(r, t) where σ(r) is
the conductivity), (3) the vector potential within V
depends only upon currents external to V since the
secondary Ohmic currents, established within V due
to the electric field caused by the time varying external
current, are relatively small by comparison and (4) the
boundary conditions at the interface between regions
n and n+ 1 are r̂ · jn = r̂ · jn+1 and r̂× en = r̂× en+1

where r̂ is unit vector in the radial direction of a spher-
ical coordinate system. The first boundary condition
is a consequence of the quasistatic condition∇· j= 0
whereas the second boundary condition is valid in
general.

2.1. TEP
To calculate e(r, t) within V we require a convenient
form of the scalar potential φ(r, t) and vector poten-
tial a(r, t) suitable to the assumed spherical geometry.
Given the geometry of the model a natural choice
for representing the electric fields of both methods is
the complete set of vector spherical harmonics. The
electric scalar potential, obeying Laplace’s equation
∇2 φ= 0 within V, can be written as sums of scalar
spherical harmonics Y jm(θ,ϕ) in the three regions of
the three-shell model as:

φ0(r,θ,ϕ, t) = r2
∑
jm

Ajm(t)r
jYjm(θ,ϕ) (3)

φ1(r,θ,ϕ, t) = r2
∑
jm

Bjm(t)r
jYjm(θ,ϕ)

+Cjm(t)r
−( j+1)Yjm(θ,ϕ) (4)

φ2(r,θ,ϕ, t) = r2
∑
jm

Djm(t)r
jYjm(θ,ϕ)

+ Ejm(t)r
−( j+1)Yjm(θ,ϕ) (5)

where the subscript k= 0, 1, 2 of φk(r, θ,ϕ, t) denotes
the region and where the indices of the double sum-
mation have values j= 0, . . . ,∞ and m=−j,…, j.
The quantities Ajm, Bjm, Cjm, Djm and Ejm will be
determined by the boundary conditions. Since the
vector potential can be neglected in the TEP case
(the vector potential due to current in V is neg-
ligible) the electric field is given by e(r,θ,ϕ, t) =
− 1

r2
∇φ(r,θ,ϕ, t) and in the three regions:

e0(r,θ,ϕ) =−
∑
jm

Ajm[ j(2j+ 1)]1/2r j−1Y j−1
jm (θ,ϕ

(6)

e1(r,θ,ϕ) =−
∑
jm

Bjm[ j(2j+ 1)]1/2r j−1Y j−1
jm (θ,ϕ)

−
∑
jm

Cjm[( j+ 1)(2j+ 1)]1/2r−( j+2)

×Y j+1
jm (θ,ϕ) (7)

e2(r,θ,ϕ) =−
∑
jm

Djm[ j(2j+ 1)]1/2r j−1Y j−1
jm (θ,ϕ)

−
∑
jm

Ejm[( j+ 1)(2j+ 1)]1/2r−( j+2)

×Y j+1
jm (θ,ϕ) (8)

where the time dependence has been suppressed for
the sake of a compact notation and the Yljm(θ,ϕ)
are complex valued vector spherical harmonics (see
appendix A).

The boundary conditions at r= 1, r= α1 = r1/r2
and r= α0 = r0/r2 are

σ2e2(1,θ,ϕ) · r̂= j(1,θ,ϕ) · r̂ (9)

σ1e1(α1,θ,ϕ) · r̂= σ2e2(α1,θ,ϕ) · r̂
r̂× e1(α1,θ,ϕ) = r̂× e2(α1,θ,ϕ) (10)

σ0e0(α0,θ,ϕ) · r̂= σ1e1(α0,θ,ϕ) · r̂
r̂× e0(α0,θ,ϕ) = r̂× e1(α0,θ,ϕ). (11)

By applying these five boundary conditions we
obtain a system of five linear equations which can be
solved (see appendix B) for the quantities Ajm, Bjm,
Cjm, Djm and Ejm. Defining ϵ= σ1/σ0 and making
the reasonable assumption that σ2 = σ0 the following
solution is obtained:

Ajm = ajα
−(2j+1)
0 α

−(2j+1)
1 D−1

j Ijm

Bjm = bjα
−(2j+1)
0 α

−(2j+1)
1 D−1

j Ijm

Cjm = cjα
−(2j+1)
1 D−1

j Ijm

Djm = [d0jα
−(2j+1)
0 + d1jα

−(2j+1)
1 ]α

−(2j+1)
1 D−1

j Ijm

Ejm = ej[α
−(2j+1)
0 −α

−(2j+1)
1 ]D−1

j Ijm (12)
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where, for the sake of compact notation, we have
defined

aj = ϵ(2j+ 1)2

bj = (2j+ 1)([1+ ϵ] j+ ϵ)]

cj =−(1− ϵ)j(2j+ 1)

d0j = ([1+ ϵ] j+ ϵ)([1+ ϵ] j+ 1)

d1j =−(1− ϵ)2j( j+ 1)

ej = (1− ϵ)j([1+ ϵ] j+ ϵ)] (13)

and

Dj =−ϵj3α−(2j+1)
0 α

−(2j+1)
1 − ϵ2j2( j+ 1)α−(2j+1)

0

×α
−(2j+1)
1 − ϵj2( j+ 1)α−(4j+2)

1 + ϵ2j2( j+ 1)

×α
−(4j+2)
1 − j2( j+ 1)α−(2j+1)

0 α
−(2j+1)
1

− ϵj( j+ 1)2α−(2j+1)
0 α

−(2j+1)
1 + j2( j+ 1)

×α
−(4j+2)
1 − ϵj2( j+ 1)α−(4j+2)

1 − ϵj2( j+ 1)

×α
−(2j+1)
0 − ϵ2j( j+ 1)2α−(2j+1)

0 − ϵj( j+ 1)2

×α
−(2j+1)
1 + ϵ2j( j+ 1)2α−(2j+1)

1 + j2( j+ 1)

×α
−(2j+1)
0 + ϵj( j+ 1)2α−(2j+1)

0

− j2( j+ 1)α−(2j+1)
1 + ϵj2( j+ 1)α−(2j+1)

1 (14)

and

Ijm =
1

σ2

ˆ 2π

0

ˆ π

0
j(1,θ,ϕ) · r̂ Y∗

jm(θ,ϕ) sinθdθdϕ.

(15)
Note that since∇· j= 0 for a quasistatic system then,
according to Gauss’s Law, I00 = 0 therefore the indices
of the double summation are now j= 1, . . . ,∞ and
m=−j,…, j.

Considering the solutions for the electric field
within the brain as given by equation (6) together
with equation (15) it is apparent that the electric
field is independent of the size of the head r2. There-
fore for two different size three-shell model heads,
with the same relative size shells, the electric fields
will be identical at any given nondimensional posi-
tion within the head if the current densities j(1,θ,ϕ)
are identical. However for a fixed angular distribution
of current density, since the surface area of the elec-
trodes increases as r22 , then so does the total current
delivered to the electrodes by the current source.

2.2. TMP
In accordance with equation (2) both the scalar
potential φ(r, t) and vector potential a(r, t) must be
considered to obtain the TMP electric field e(r, t)
within V. In terms of the dimensionless spatial
coordinate r the vector potential in the quasistatic
case is given by [26]

a(r, t) =
r22
c

˚
j(r ′, t)

|r− r ′|
d3r ′. (16)

Expanding the integrand in terms of vector spherical
harmonics (see [19, p 229]) we can write the electric
field within V as

a(r, t) = c
∑
ljm

r l

2l+ 1
Y l
jm(θ,ϕ)J

l
jm(t) (17)

where l= j− 1, j, j+ 1 and

J ljm(t) =
4πr22
c2

ˆ ˆ ˆ
1

r ′l+1
j(r ′,θ ′,ϕ ′, t)

·Y∗ljm(θ ′,ϕ ′)r ′2 sinθ ′dr ′dθ ′dϕ ′. (18)

Since the ohmic currentwithinV can be neglected
in the calculation of the vector potential then it fol-
lows that ∇× b=∇×∇× a= 0 within V. Apply-
ing this constraint (making use of identities given in
[19, pg 217]) one finds that J j+1

jm = 0 and therefore

a(r, t) = c
∑
jm

r j

2j+ 1
J jjm(t)Y

j
jm(θ,ϕ)

+ c
∑
jm

r j−1

2j− 1
J j−1
jm (t)Y j−1

jm (θ,ϕ). (19)

Since the quasistatic vector potential given by
equation (16) satisfies∇· a= 0 everywhere and since
∇· e= 0 within V then according to equation (2)
the scalar potential must satisfy the Laplace equation
within V. Therefore within V the scalar potential in
the three regions can written as:

φ0(r,θ,ϕ) = r2
∑
jm

Ajmr
jYjm(θ,ϕ) (20)

φ1(r,θ,ϕ) = r2
∑
jm

Bjmr
jYjm(θ,ϕ)+Cjmr

−( j+1)

×Yjm(θ,ϕ) (21)

φ2(r,θ,ϕ) = r2
∑
jm

Djmr
jYjm(θ,ϕ)+ Ejmr

−( j+1)

×Yjm(θ,ϕ) (22)

and the corresponding electric fields are:

e0(r,θ,ϕ) =−
∑
jm

[ j(2j+ 1)]1/2Ajmr
j−1Y j−1

jm (θ,ϕ)

−
∑
jm

r j

2j+ 1

∂J jjm
∂t
Y j
jm(θ,ϕ)

−
∑
jm

r j−1

2j− 1

∂J j−1
jm

∂t
Y j−1
jm (θ,ϕ) (23)

e1(r,θ,ϕ) =−
∑
jm

[ j(2j+ 1)]1/2Bjmr
j−1Y j−1

jm (θ,ϕ)

−
∑
jm

[( j+ 1)(2j+ 1)]1/2Cjmr
−( j+2)

5
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×Y j+1
jm (θ,ϕ)−

∑
jm

r j

2j+ 1

∂J jjm
∂t
Y j
jm

× (θ,ϕ)−
∑
jm

r j−1

2j− 1

∂J j−1
jm

∂t
Y j−1
jm (θ,ϕ)

(24)

e2(r,θ,ϕ) =−
∑
jm

[ j(2j+ 1)]1/2Djmr
j−1Y j−1

jm (θ,ϕ)

−
∑
jm

[( j+ 1)(2j+ 1)]1/2Ejmr
−( j+2)

×Y j+1
jm (θ,ϕ)−

∑
jm

r j

2j+ 1

∂J jjm
∂t
Y j
jm

× (θ,ϕ)−
∑
jm

r j−1

2j− 1

∂J j−1
jm

∂t
Y j−1
jm (θ,ϕ).

(25)

Note that once again the time dependence of the fields
has been suppressed for the sake of compact notation.

The boundary conditions are still those given by
equations (9)–(11) albeit with j ·n= 0 and now the
electric field has a component due to induction as
well as that due to surface charges. By applying the
five boundary conditions we again obtain a system
of five linear equations which can be solved (see
appendix C) for the quantities Ajm, Bjm, Cjm, Djm and
Ejm. For all three regions the following simple solution
is obtained:

e(r,θ,ϕ) =−
∑
jm

r j

2j+ 1

∂J jjm
∂t
Y j
jm(θ,ϕ). (26)

Note that the electric field due to the surface charge
exactly cancels the l= j− 1 components of the mag-
netically induced components of the electric field and
therefore the conductivities do not appear anywhere
in the solution. Nondimensional spatial coordinates
have been used in equation (26) and the only quant-
ity which depends on the size of the head r2 is J jjm
as defined in equation (18). Accordingly as r2 is
decreased the current density must increase as r22 in
order to achieve the same electric field magnitude at
the nondimensional radial position r within the head.
This presents a challenge for creating small animal
TMP systems [28–30] with electric fields of angu-
lar resolution and magnitude comparable to those in
humans. If smaller coils are used to try to achieve
angular resolution comparable to that in humans the
resistance of such coils will, for frequencies of interest
here, increase approximately as r−2

2 while the current
needed to obtain similar electric fields in the cortex is
unchanged. As a result the power dissipated in the coil
will increase approximately as r−1

2 demanding effi-
cient and relatively small cooling systems to prevent
damage to the TMP coil. Of course a more complete

description of the differences between humans and
small animals would include differences in the size of
each shell of the three shell model and the conductiv-
ities therein.

One important point to note is thatTEP and TMP
electric fields within the brain region exist in ortho-
gonal subspaces. This follows from the VSH property´ π
0

´ π
0 Y

l
jm(θ,ϕ) ·Yl

′

j ′m ′(θ,ϕ) sinθdθdϕ= δll ′δjj ′δmm ′

and from equations (6) and (23) which show that the
TEP and TMP brain electric fields are spanned by
the l= j− 1 and l= j VSH components respectively.
Also note that the TMP electric field, unlike the TEP
field, has no radial component (see appendix A). The
orthogonality of the TEP and TMP fields has great
consequence since the coupling of the electric field to
neurons is dependent upon the relative direction of
the field and the neuronal fibers. Consequently even
if the electric field of TEP and TMP are angularly
‘focused’ on the same regions of the cortex completely
different populations of neurons may be affected by
each. This may be of particular importance to studies
which use suprathrsehold TMS to probe changes in
cortical excitability due to TES.

3. Results

Here, estimates are given, in the context of the three-
shell TEP/TMP model, for select metrics of the relat-
ive power dissipated in the scalp and brain regions.
In addition a simple estimate of the relative power
utilized by the methods is presented to give a bal-
anced understanding of the limitations and strengths
of each.

Three power metrics are calculated: RTEP, RTMP

and R. The quantities RTEP and RTMP are the scalp-
to-brain ratios of power dissipation for the TEP and
TMP cases respectively. These quantities enable one
to estimate the power dissipated in the scalp for a
given power dissipated in the brain. However the
radial dependence of the TEP and TMP electric fields
are fundamentally different making it difficult to dir-
ectly compare the relative energy dissipated (ormean-
squared electric field) in the scalp for the two meth-
ods. To yield a better direct comparison the quantity
R is calculated which gives the TEP-to-TMP ratio of
scalp energy dissipation for the case of similar TEP
and TMP electric fields at the radial position of the
cortex. Example calculations of each ratio are given
for the case of typical electrode and coil geometries.
In addition the three quantities are calculated in the
case where only one VSH of index j contributes to
the field. This leads to the calculation of an asymp-
totic limit to the ratio R. Note that since the conduct-
ivities of the brain and scalp are taken to be equal
in this three-shell model then the dissipated power
ratios are equivalent to mean-squared electric field
ratios.
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3.1. Relative power dissipation in brain and scalp:
TEP case
In this subsection we calculate RTEP, the ratio of the
spatiotemporal averaged power dissipated in the scalp
and brain regions for the TEP electric field. The aver-
aged power dissipated in region k is given by:

Pk =
σk

VkT

ˆ T

0

ˆ
Rk

|e(r,θ,ϕ, t)|2r2 sinθdrdθdϕdt

(27)

where Vk is the volume of region Rk, σk is its con-
ductivity and T is the temporal averaging interval.
The interval T could be any meaningful time inter-
val for the temporal waveform of the current source.
For example, it could a period of a periodic waveform
or it could be an interval which is large compared to
such a period. Note that if the current density is separ-
able with respect to the spatial and temporal variables
(that is j(r,t) = I(t) f(r)) then temporal averaging is
inconsequential since the time dependence cancels in
the ratio RTEP. All but one of the current densities
considered in this work will be separable. The excep-
tions, as discussed in section 3.4, will be a TMP sys-
tem comprised of two circular coils and a TEP system
comprised of two electrode pairs each driven by inde-
pendent sinusoidal current sources of different fre-
quencies. Also note that Pk can also be interpreted as
the product of the mean-square electric field and the
conductivity for region k.

Using equations (6), (12) and (27) we can write
the average power dissipated in region 0 due to the

TEP electric field as:

PTEP0 =
σ0
r22V0

∑
jm

j|Ajm|2α2j+1
0

=
3σ0

4πr22α
3
0

∑
jm

ja2j α
−(2j+1)
0 α

−(4j+2)
1 D−2

j |Ijm|2

(28)

where the line over time dependent quantities denotes
a time average. Similarly the average power dissipated
in region 2 is:

PTEP2 =
σ0
V2

∑
jm

[
|Djm|2j(r2j+1

2 − r2j+1
1 )+ |Ejm|2

× ( j+ 1)(r−(2j+1)
1 − r−(2j+1)

2 )
]

=
3σ0

4π(1−α3
1)r

2
2

∑
jm

j
[
d0jα

−(2j+1)
0 α

−(2j+1)
1

+d1jα
−(4j+2)
1

]2
×D−2

j |Ijm|2(1−α
2j+1
1 )+

3σ0
4π(1−α3

1)r
2
2

×
∑
jm

( j+ 1)e2j [α
−(2j+1)
0 −α

−(2j+1)
1 ]2

×D−2
j |Ijm|2[α−(2j+1)

1 − 1]. (29)

Each term in the summation of equation (28) or (29)
is the average power PTEP,kjm dissipated in the VSH
component of the TEP electric field indexed by (j,m)
in regions k= 0, 2. The ratio, RTEP = PTEP2 /PTEP0 , of
the average power dissipated in the scalp to that dis-
sipated in the brain is then

RTEP =
α3
0

1−α3
1

∑
jm j[d0jα

−(2j+1)
0 α

−(2j+1)
1 + d1jα

−(4j+2)
1 ]2D−2

j |Ijm|2(1−α
2j+1
1 )∑

jm ja2j α
−(2j+1)
0 α

−(4j+2)
1 D−2

j |Ijm|2

+
α3
0

1−α3
1

∑
jm( j+ 1)e2j [α

−(2j+1)
0 −α

−(2j+1)
1 ]2D−2

j |Ijm|2[α−(2j+1)
1 − 1]∑

jm ja2j α
−(2j+1)
0 α

−(4j+2)
1 D−2

j |Ijm|2
. (30)

In general RTEP depends upon Ijm, that is, it
depends upon the geometry of the TEP electrodes and
the magnitude of the current supplied to the elec-
trodes. However general features can be elucidated
by considering the separable case when the current
source is such that Ijm = 0 for all but one value of j
(m not restricted). In that case the power ratio for the
jth component, RTEP

j = PTEP,2jm /PTEP,0jm , is given by:

RTEP
j =

α3
0

1−α3
1

[(d0j/aj)α
−(2j+1)
0 +(d1j/aj)α

−(2j+1)
1 ]2

× [1−α
2j+1
1 ]α

2j+1
0 +

α3
0

1−α3
1

j+ 1

j
(ej/aj)

2

× [α
−(2j+1)
0 −α

−(2j+1)
1 ]2[1−α

2j+1
1 ]

×α
2j+1
0 α

2j+1
1 . (31)

Figure 2 shows the dependence of RTEP
j upon j for a

three shell conductormodel. It is clear from the figure
that RTEP

j increases as j increases. In other words, as
the spatial detail of the electric field increases (e.g. more
focality) so does the energy dissipated in the scalp rel-
ative to that dissipated in the brain. Note that for any
value of j the spatial detail is not equal in the θ and ϕ
directions.

To estimate RTEP for a typical TEP system con-
sider the scalp electrode system depicted in figure 3.
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Figure 2. RTEP
j versus j for TEP electric fields. RTEP

j is the ratio of the mean-squared electric field over the scalp region to that over
the brain region for an electric field comprised of a single vector spherical harmonic component indexed by the pair of integers j
andm. The index j of the vector spherical representation of the electric field is reciprocally related to spatial scale in the field. Note
that RTEP

j is independent of indexm for any given value of j. The cost of greater electric field focality in the brain is greater
mean-squared electric field in the scalp relative to the brain.

In this example the system is comprised of two elec-
trodes each subtending an angle θo on the scalp sur-
face, with electrode centers separated by the angle β.
Appendix D derives the Ijm for such a system which is
found to be:

Ijm = I+j0

[
δm0 −

√
( j−m)!

( j+m)!
Pmj (cosβ)

]

= I+j0

[
δm0 −

√
4π

2j+ 1
P̃mj (cosβ)

]
(32)

where

I+j0 = 2πIo

√
1

2j+ 1

[√
1

2j+ 3
P̃j+1(cosθo)

−

√
1

2j− 1
P̃j−1(cosθo)

]
(33)

and where Io is the radial component of a uniform
current density provided by the electrodes. Note that
the Pmj are associated Legendre functions and that

the P̃mj are the more numerically stable renormalized
associated Legendre functions (see appendix D).

C++ computer code (available upon request)
was written to perform all summations within this
work. The computation of the normalized associated
Legendre functions Pmj was adopted from a standard

[31]. Figure 4 shows the dependence of RTEP versus
electrode separation angle β for four different elec-
trode sizes θo. RTEP increase as spatial detail increases
with smaller electrodes or smaller separation between
the electrodes.

r2

β

θo

re

re

Figure 3. Spherical head model with two TEP electrodes on
the scalp surface (r= r2). Each electrode (outlined)
subtends the angle θo from its center and the centers of the
two electrodes are separated by the angle β.

3.2. Relative power dissipation in brain and scalp:
TMP case
In this subsection we calculate the ratio of the
spatially-averaged power dissipated in the brain and
scalp regions for the TMP electric field. Using
equations (26) and (27) we can write the average
power dissipated in region 0 as:

PTMP
0 =

3σ0
4πα3

0

∑
jm

α
2j+3
0

(2j+ 1)2(2j+ 3)

∣∣∣∣∣∂J
j
jm

∂t

∣∣∣∣∣
2

. (34)
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Figure 4. A plot of ratio RTEP versus electrode separation angle β for four different electrode radii re. RTEP is the ratio of the
mean-squared electric field over the scalp region to that of the brain region for the specific electrode system depicted in figure 3.
The angle θo which subtends the electrode from its center is determined according to θo = cos−1

√
1− r 2e . Each plot extends over

the range β= [2θo, 90] so that the electrodes do not overlap.

Similarly the average dissipated power in region 2 is:

PTMP
2 =

3σ0
4π(1−α3

1)

∑
jm

1−α
2j+3
1

(2j+ 1)2(2j+ 3)

∣∣∣∣∣∂J
j
jm

∂t

∣∣∣∣∣
2

(35)

and the ratio RTMP = PTMP
2 /PTMP

0 is:

RTMP =

α3
0

1−α3
1

∑
jm(1−α

2j+3
1 )[(2j+ 1)2(2j+ 3)]−1

∣∣∣∣∂J jjm∂t

∣∣∣∣2
∑

jmα
2j+3
0 [(2j+ 1)2(2j+ 3)]−1

∣∣∣∣∂J jjm∂t

∣∣∣∣2
.

(36)

If the current source is such that J jm = 0 for all
but one value of j (m not restricted) then RTMP

j =

PTMP,2
jm /PTMP,0

jm is

RTMP
j =

α3
0

1−α3
1

1−α
2j+3
1 α

2j+3
0 . (37)

Figure 5 shows the dependence ofRTMP
j upon j. Again,

as in the case of TEP, the spatial detail of the elec-
tric field comes at a cost. The energy dissipated in
the scalp relative to the energy dissipated in the brain
increases as the electric field is made more spatially
detailed. However, in contrast to the TEP electric
field, RTMP

j is much smaller than RTEP
j for a given j.

For example at j= 20RTEP
j is approximately 35 times

greater than RTMP
j .

The value of RTMP will of course depend on the
geometry of the TMP coil. That is it will depend upon
J jm. Here calculations of RTMP are given for simple
thin circular TMS coils and figure-8 coils as depicted

in figure 6. The specifications for TMS coils, which
typically containmany windings of Litz wire, are usu-
ally given in terms of an inner and outer radius for the
winding. Here the coils are approximated by a single
winding at the average of typical inner and outer radii.
For the circular coil (coil 1 of figure 6) assume the cur-
rent density j is a thin ring of current of amplitude
I(t) and radius rc (in units of r2) inscribed on a plane
tangent to the outer surface of the scalp region and
centered on the vertical axis. Appendix E calculates
J jjm for this simple coil to be:

J jjm = iδm0
8π 2r22
c2ρ j

o

I
√
1− cos2 θoP̃

1
j (cosθo) (38)

where θo = cos−1(1/
√

r2c + 1). A figure-8 coil can be
constructed from two circular coils (coils 1 and 2 of
figure 6) with currents circulating in opposite senses
and with coil 2 rotated by an angle 2 θo relative to coil
1. For this figure-8 coil J jjm = J j+jm − J j−jm where J j+jm and

J j−jm are contributions from coil 1 and 2 respectively.

Appendix E calculates J jjm for this figure-8 coil to be:

J jjm = i
8π 2r22
c2ρ j

o

I
√
1− cos2 θo

×

[
δm0 − (−1)m

√
4π

2j+ 1
P̃mj (cos2θo)

]
× P̃1j (cosθo). (39)

Figure 7 gives a plot of RTMP versus coil radii for the
circular and figure-8 coils. Clearly the value of RTMP

increases as the radius of the coil decreases. Note that
for coil radii less than 10 mm the difference between
the figure-8RTMP and circular coilRTMP is quite large.
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Figure 5. RTMP
j versus j for TMP electric fields. RTMP

j is the ratio of the mean-squared electric field over the scalp region to that
over the brain region for an electric field comprised of a single vector spherical harmonic component indexed by the pair of
integers j andm. The index j of the vector spherical representation of the electric field is reciprocally related to spatial scale in the
field. Note that RTMP

j is independent of indexm for any given value of j. As with TEP the cost of greater electric field focality in the
brain is greater mean-squared electric field in the scalp relative to the brain. However that cost is much greater for TEP as
compared to TMP.

r2
θo

coil 1

coil 2

rc

Figure 6. Spherical head model with two circular TMP coils
with radii rc . The centers of coil 1 and 2 are on the scalp
scalp surface (r= r2). Note that the angle between the
planes of the two coils is π− 2 θo.

However for coil radii greater than 10 mm the differ-
ence is not near as stark.

The quantitiesRTEP andRTMP are useful for estim-
ating the mean-squared electric field in the scalp
(brain) given an estimate for mean-squared electric
field in the brain (scalp). Even though the plots of
RTEP and RTMP given in figures 4 and 7 respect-
ively show that the values of RTMP are typically
much smaller than RTEP for standard TEP electrode
and TMP coil configurations a direct comparison of
these quantities may be inadequate for estimating
the relative intensities of the TEP and TMP scalp

electric fields. This direct comparison is complicated
by the fact that the electric fields of TEP and TMP
have different radial dependences whichmay skew the
volume averages over the brain region. Furthermore,
while it is the scalp electric field that often limits the
brain electric field amplitude, the usual target of the
electric field is the cortex. Therefore a better com-
parison of TEP-to-TMP scalp electric fields might be
obtained when their respective electric fields at the
radial distance of the cortex were similar.

3.3. Comparison of TMP and TEP power
dissipation
This section examines the ratio of TEP-to-TMP
power dissipated in the scalp for similar electric fields
at the radial distance of the cortex. That is, the quant-
ity R given by

R=
PTEP2

PTMP
2

=

∑
jmPTEP,2jm∑
jmPTMP,2

jm

(40)

is calculated where PTEP,2jm and PTMP,2
jm are respectively

the TEP and TMP power dissipated in region 2 for
the VSH component indexed by (j,m). Such a quant-
ity would allow one to meaningfully compare TEP to
TMPelectric fieldswith respect to the energy they dis-
sipate in the scalp.

Importantly, the TEP and TMP electric fields can-
not be equal since they reside in orthogonal sub-
spaces. Given this limitation, a metric of the electric
field similarity must be defined. The metric used here
defines similar TEP and TMP electric fields as those
which have identical cortical surface-area-averaged
power dissipation for each component of their VSH
expansion at all times t. This condition is insufficient

10
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to uniquely define the similar electric fields but it is a
reasonable definition of similarity and is, as will bee
seen, sufficient to derive R.

For the TEP or TMP electric field the
power PS(α0) averaged over the spherical sur-
face S at r=α0 (the cortical surface) is given
by

PS(α0) = σk

ˆ
S0

|e(α0,θ,ϕ)|2 sinθdθdϕ. (41)

The chosen metric of similarity requires that
PTMP
S (α0) = PTEPS (α0) and according to equations

(6) and (26) similarity is obtained when:

∣∣∣∣∣∂J
j
jm

∂t

∣∣∣∣∣
2

=
a2j

r22α
2
0

j(2j+ 1)3α−(4j+2)
0 α

−(4j+2)
1 D−2

j |Ijm|2

(42)

or alternatively

D−2
j |Ijm|2 =

r22α
2
0

a2j

1

j(2j+ 1)3
α
4j+2
0 α

4j+2
1

∣∣∣∣∣∂J
j
jm

∂t

∣∣∣∣∣
2

.

(43)

According to equations (29) and (35) the ratio
of volume-averaged power dissipated in the scalp
(region 2) is

R=

∑
jm jD−2

j |Ijm|2
[
d0jα

−(2j+1)
0 α

−(2j+1)
1 + d1jα

−(4j+2)
1

]2 [
1−α

2j+1
1

]
r22
∑

jm

∣∣∣∣∂J jjm∂t

∣∣∣∣2 [(2j+ 1)2(2j+ 3)]−1
[
1−α

2j+3
1

]

+

∑
jm( j+ 1)D−2

j |Ijm|2e2j
[
α
−(2j+1)
0 −α

−(2j+1)
1

]2 [
α
−(2j+1)
1 − 1

]
r22
∑

jm

∣∣∣∣∂J jjm∂t

∣∣∣∣2 [(2j+ 1)2(2j+ 3)]−1
[
1−α

2j+3
1

] (44)

and substituting (42) into (44) yields:

R=
α2
0

∑
jm j
[
d0jα

−(2j+1)
0 α

−(2j+1)
1 + d1jα

−(4j+2)
1

]2 [
1−α

2j+1
1

]
D−2

j |Ijm|2∑
jm j(2j+ 1)(2j+ 3)−1a2j α

−(4j+2)
0 α

−(4j+2)
1

[
1−α

2j+3
1

]
D−2

j |Ijm|2

+
α2
0

∑
jm( j+ 1)e2j

[
α
−(2j+1)
0 −α

−(2j+1)
1

]2 [
α
−(2j+1)
1 − 1

]
D−2

j |Ijm|2∑
jm j(2j+ 1)(2j+ 3)−1a2j α

−(4j+2)
0 α

−(4j+2)
1

[
1−α

2j+3
1

]
D−2

j |Ijm|2
. (45)

Alternatively by substituting equation (43) into (44)
the ratio for similar electric fields within the brain
(region 0) becomes

R=

α2
0

∑
jm a−2

j (2j+ 1)−3

∣∣∣∣∂J jjm∂t

∣∣∣∣2[d0j + d1j(α0/α1)
2j+1]2

[
1−α

2j+1
1

]
∑

jm[(2j+ 1)2(2j+ 3)]−1
[
1−α

2j+3
1

]∣∣∣∣∂J jjm∂t

∣∣∣∣2

+

α2
0

∑
jm(ej/aj)

2 j+1
j(2j+1)3

[
α
2j+1
1 −α

2j+1
0

]2 [
α
−(2j+1)
1 − 1

]∣∣∣∣∂J jjm∂t

∣∣∣∣2
∑

jm[(2j+ 1)2(2j+ 3)]−1
[
1−α

2j+3
1

]∣∣∣∣∂J jjm∂t

∣∣∣∣2
. (46)
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Figure 7. The ratio RTMP versus coil radius rc for circular coils (bottom row) and figure-8 (top row) coil. RTMP is the ratio of the
mean-squared electric field over the scalp region to that of the brain region for the coil geometries depicted in figure 6. For small
radii the difference between the values of RTMP for the circular and figure-8 coils is quite pronounced. Therefore, to draw
attention to this difference, the left plots cover 0–10 mm radii whereas the right plots cover 10–90 mm.

Whether to choose equation (45) or (46) depends
upon whether one is comparing similar fields gener-
ated by a given TEP electrode configuration (Ijm are

known) or by a given TMP field (J jjm are known).
If the Ijm are zero for all but one value of j

(m unrestricted) then

Rj =

(
α0

aj

)2 2j+ 3

2j+ 1

[
d0j + d1j(α0/α1)

2j+1
]2

×

[
1−α

2j+1
1

1−α
2j+3
1

]
+

(
α0

aj

)2 2j+ 3

2j+ 1

j+ 1

j
e2j α

2j+1
1

×
[
1− (α0/α1)

2j+1
]2[1−α

2j+1
1

1−α
2j+3
1

]
. (47)

As j→∞ the value of Rj → R∞ where

R∞ =
1

16

(1+ ϵ)4

ϵ2
α2
0 . (48)

That is, Rj asymptotically approaches an upper limit
determined by the relative size of the brain region α0

and the scalp-to-skull conductivity ratio ε. Note that
if the TEP and TMP electric fields are constrained
to be similar at arbitrary depth, rather than at the
cortical surface, then αo is replaced by α= r/r2.

Therefore the advantage of TMP over TEP with
respect to the scalp-to-brain ratio of the root-mean-
squared electric field is linear with respect to
radial depth at which the fields are taken to be
similar.

Figure 8 gives the plot of Rj versus j for three dif-
ferent conductivity ratios ε although ε= 0.0125 is the
value most often assumed in the literature. The plot
shows that Rj clearly increases with respect to j, an
index of decreasing spatial scale of the electric field,
but reaches an asymptotic value. For the particular
dimensions of three-shell model used in this work the
asymptotic values corresponding to the conductivity
ratios ε= 0.0075, 0.0125 and 0.0175 are 865.6, 317.9
and 165.4.

Figure 9 gives a plot of R versus electrode separa-
tion angle for five different electrode radii typical in
TEP systems. As the electrode separation or the elec-
trode radii decrease—that is, the spatial detail in the
field increases—the value of R increases. Figure 10
gives a plot of R versus coil radius for the simple
circular TMS coil and the figure-8 coil. Again note
that as the spatial detail increases (coil size decreases)
R increases. For typical circular coils with average
radii of 20–40 mm the value of corresponding val-
ues of R range from 105 to 171. Also note that, as
compared to the circular coil of the same radius,

12
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Figure 8. The ratio Rj versus j for three different values of the skull-to-scalp conductivity ratio ε. Rj is the ratio of the TEP to TMP
mean-squared electric field over the scalp for similar electric fields at the level of the cortical surface when the electric field is
comprised of a single vector spherical harmonic component indexed by integers j andm. The literature typically uses the value

ϵ= 1/80= 0.0125. Note that each curve approaches an asymptotic limit given by R∞ = 1
16
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0 . For similar electric fields

at the level of the cortex, TEP produces much larger mean-squared scalp electric fields compared to TMP as electric field focality
increases at the cortex.
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Figure 9. R versus the electrode separation angle (degrees) for five different electrode radii (mm) that are typical of commercial
TEP electrode systems depicted in figure 3. R is the ratio of the TEP to TMP mean-squared electric field over the scalp when the
TMP electric field at the level of the cortical surface is similar to that produced by the TEP system depicted in figure 3. Each plot
extends from the minimal separation between electrodes (twice the angle subtended by the electrode from its center) up to 180◦.

the figure-8 coil has a modestly increased value
of R.

Note, by referring to equation (40), that R∞, the
asymptotic value ofRj, is additionally an upper bound
to the value of R. Therefore although R, the TEP-to-
TMP ratio of power dissipated in the scalp for similar
electric fields at the cortex, increases with increasing
spatial detail of the field there is an upper limit to this
value. Also note that the electric field of a figure-8 coil,
which is in common use in TMS research, would be
expected to yield values ofR considerably greater than
that of the circular coil used here due to its more focal
field.

3.4. TMP and TEP power dissipation for
nonseparable current densities
All of the current densities considered in this work
have, up to this point, been separable with respect
to time and spatial coordinates as is typical of
extant TEP and TMP systems. However, interesting
TEP work has recently been done with nonsepar-
able current densities to produce spatially depend-
ent temporal interference effects in mice brains
[32]. Consider now the nonseparable case of a
TMP system comprised of the two circular coils of
the figure-8 example albeit with each coil driven
independently. Coil 1 has time dependence sinω1t

13
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Figure 10. R versus coil radius of the circular and figure-8 coils (ε= 1/80). R is the ratio of the TEP to TMPmean-squared electric
field over the scalp when the TEP electric field at the level of the cortical surface is similar to that produced by the TMP system
depicted in figure 6.

and coil 2 has time dependence sinω2t. In such a
case:

∑
m

∣∣∣∣∣∂J
j
jm

∂t

∣∣∣∣∣
2

=
∑
m

∣∣∣ω1 cosω1tJ
j+
jm −ω2 cosω2tJ

j−
jm

∣∣∣2
= ω 2

1 cos
2ω1t

∑
m

|J j+jm |2 +ω 2
2 cos

2ω2t

×
∑
m

|J j−jm |2 −ω1ω2 cosω1tcosω2t

×
∑
m

(
j j+∗
jm J j−jm + J j+jm J j−∗

jm

)
= ω 2

1 cos
2ω1t

∑
m

|J j+jm |2 +ω 2
2 cos

2ω2t

×
∑
m

|J j−jm |2 − ω1ω2

2
[cos(ω1 −ω2)t

+ cos(ω1 +ω2)t]
∑
m

[
j j+∗
jm J j−jm + J j+jm

× J j−∗
jm

]
(49)

where J j+jm and J j−jm are the coefficients corresponding
to coils 1 and 2 (see appendix E). For time averages
over an interval T such |ω1 −ω2|−1 ≪ T

∑
m

∣∣∣∣∣∂J
j
jm

∂t

∣∣∣∣∣
2

≈ 1

2

(
ω 2
1

∑
m

|J j+jm |2 +ω 2
2

∑
m

|J j−jm |2
)
(50)

where the horizontal line denotes a time average.
Finally, since the coils are assumed to be identical in
their shape

∑
m

∣∣∣∣∣∂J
j
jm

∂t

∣∣∣∣∣
2

≈ 1

2

(
ω 2
1 +ω 2

2

)∑
m

|J j+jm |2. (51)

For the TEP case of two pairs of electrodes, each pair
driven by current sources of different frequencies, a
similar result is obtained:

∑
m

|Ijm|2 ≈
∑
m

|I+jm|
2. (52)

Therefore in the long-time average case a system of
two pairs of TEP electrodes, in which each pair is
identical except for a rotation on the sphere’s sur-
face, the power ratios calculated for the interfering
pair are the same as that for a single pair of electrodes.
A similar statement can be made for interfering TMP
coils except that the single coil power ratio is multi-
plied by the average of the squared frequencies of each
coil. These results can be extrapolated to an arbit-
rary number of coils or electrode pairs rotated to dif-
ferent positions on a spherical surface in which the
long-time average extends over an time interval large
compared to the reciprocal of the smallest frequency
differences.

3.5. Current source energy utilization
From the results given in the previous sections it is
clear that TMP has the distinct advantage of pro-
ducing a much smaller scalp electric field than TEP
for similar cortical fields and therefore capable of
diminishing potential deleterious scalp effects. How-
ever many TEP applications target specific brain elec-
tric field frequencies in the range of 0–200 Hz. This
frequency range covers most of the brain frequencies
which are measured by electroencephalography and
magnetoencephalography. As the simple analysis of
this section will show, within this frequency range it is
energetically costly to generate TMP electric fields of
significant amplitude to potentially alter brain activ-
ity (at least 0.5 Vm−1).
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The source of electric current for TEP or TMP
delivers power to a load which is comprised of cables,
electrodes (TEP) or coils (TMP) and a head. For
standard TES and TMS systems there is one source
of current driving the TES electrodes or the TMS
coil. Because of this the quasistatic electric field E(r, t)
induced in the brain will be separable with respect
to temporal and spatial variables. As already noted
the TES electric field depends linearly upon the cur-
rent amplitude Ie(t) whereas the TMS electric field
depends linearly upon the temporal derivative of the
current Im(t) supplied to the coil. In the following it
will be assumed that Im(t) = Imo sin(2πft) and Ie(t) =
Ieo sin(2πft) where f is the frequency of a continuous
applied field. We can then write the corresponding
electric fields as

Em(r, t) = em
dIm(t)

dt
em(r)

= em2πf Imo cos(2πft) em(r) (53)

Ee(r, t) = ee Ie(t) ee(r) = eeIeo sin(2πft) ee(r) (54)

where em(r) and ee(r) are vector fields with mag-
nitude normalized to one at some point ro in the cor-
tex, and em and ee are the corresponding magnitudes
at that point in units of (Vs Am−1) and (VAm−1)
respectively.

Typical TMS coils (figure-8 shape with induct-
ance of 12.0 µH and resistance of 12.0 mΩ) are
known to produce a peak electric field amplitude
of approximately 100 Vm−1 electric in the cor-
tex near the coil (ie ro) when Imo = 5.0 kA and
f = 4 kHz. Using equation (53) an estimate of
em = (100V m−1)/(2πImof) = 7.9× 10−7 Vs Am−1

is obtained. For a typical TES system the peak elec-
tric field is known to be approximately 0.5 Vm−1

for Ieo = 2.0 mA. This yields an estimate of ee =
(0.5V m−1)/Ieo = 250V Am−1.

To obtain estimates of the power supplied to the
TES and TMS loads it is assumed that typical TES and
TMS systems are used to create electric fields which
have equal amplitudes at some some point ro in the
brain region. The point ro will be assumed to be a rel-
ative spatialmaximum(true extrema cannot exist) for
both the TEP and TMP electric fields but the distri-
bution of the electric field about ro will be assumed
to be only as similar as present methods allow. The
ratio of temporally-averaged power (averaged over
one period of a sinusoidal source of frequency f ) sup-
plied by the TES orTMS current source to the respect-
ive loads can be written as:

r=
I2eoRe

I2moRm
(55)

where Re and Rm are the resistances of the TEP and
TMP loads respectively. The TES load is primarily

due to the resistance at the scalp-electrode interface
and to lesser degree on the conductivity of the head
and cables. The resistance of the TMS load is primar-
ily due the resistance of the TMS coil and cable. We
have previously noted that Ieo = |Ee|/ee and Imo =
|Em|/(2πemf) where |Ee| and |Em| are values for the
fields at ro. Therefore we can write:

r=

(
2πfem
ee

)2( |Ee|
|Em|

)2 Re

Rm
. (56)

Since the electric field amplitudes are assumed to be
equal at ro we can write

r=

(
2πfem
ee

)2 Re

Rm
. (57)

Since Re is primarily due to the scalp-electrode inter-
face it is roughly independent of the position of the
TES electrodes. Also Rm is roughly independent of
the presence of the head. Reasonable estimates for the
two quantities areRe = 10 kΩ andRm = 12mΩ. These
estimates correspond to those given for NeuroConn
TES electrodes and a figure-eight MagVenture TMS
coil. If we insert the values for ee and em (determined
in the previous section) for the human head along
with resistancesRe andRm of typical human head sys-
tems we obtain

r≈ f 2(3.3× 10−10). (58)

Notice that this estimate depends on the square of
the frequency. For a frequency of 10 Hz we have
r≈ 3.3×10−8 whereas for a frequency of 55 kHz
we have r≈ 1.0. Clearly TEP is far more energy effi-
cient than TMP at low frequencies whereas the reverse
is true at very high frequencies. To obtain a 10 Hz
0.5 Vm−1 TES electric field amplitudewithin the cor-
tex requires the current source to supply approxim-
ately 2.0 mA to an electrode pair. The average power
per cycle is then 0.5× (2.0mA)2 × 10 kΩ= 0.02W.
Using equation (58) we can estimate that achieving
the same TMP electric field using a typical human
TMS coil would require approximately 610 kW.

4. Discussion

It is well known that TEP amd TMP electric fields
cannot have extremal points within the interior of
the head. The extremal points must always occur
at the boundaries hence the scalp electric field will
always be of greater magnitude than the brain elec-
tric field regardless of the method. As scalp electric
fields increase in magnitude they may elicit pain due
to coupling with peripheral nerves. At higher mag-
nitudes still potentially dangerous effects due to scalp
heating may occur. These deleterious effects set a
maximum electric field magnitude within the scalp
and consequently within the brain. However with
low frequency TMP (e.g. 0–200 Hz) it is energet-
ically costly to generate electric fields of sufficient
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magnitude to significantly influence neuronal state.
Understanding how electric field focality, scalp heat-
ing and energy utilization shape the experimental
TEP and TMP space is of value to the researcher
and inventor of new noninvasive brain perturbation
methods and technology.

In this work the analytic solutions of the TEP
and TMP three shell model are derived and used to
demonstrate important features of the respective elec-
tric fields and to estimate scalp-to-brainmean-square
electric field ratios as well as the TEP-to-TMP ratio
scalp mean-squared electric fields for similar electric
fields at the cortex. When looking for general prin-
ciples and model-based estimates analytic solutions
are superior to numerical solutions since they obtain
a general solution based on system variables rather a
set of specific solutions based on specific choices of
variables. Of the general features elucidated here:

(a) TEP and TMP electric fields exist in orthogonal
subspaces spanned by the vector spherical har-
monics Y j−1

jm (θ,ϕ) and Y j
jm(θ,ϕ) respectively.

The Y j
jm(θ,ϕ) vector spherical harmonics have

no radial component whereas the Y j−1
jm (θ,ϕ) do.

Therefore a TMP electric field can only be tan-
gential to the surface of the spherical head (as has
been noted elsewhere [22]).

(b) TEP and TMP can have similar focality in the
absence of the restrictions set by scalp mean-
square electric field. A given value of index j adds
similar levels of angular spatial detail on a sphere
of arbitrary radius within the head for both TEP
and TMP electric fields.

(c) For both methods as the angular spatial detail
(indexed by j) in the electric field increases so
does the ratio of power dissipated in the scalp
(or mean square scalp electric field) to that in
the brain. For typical conductance values of the
three-shell human headmodel this ratio is much
higher in TEP (RTEP

j ) than TMP (RTMP
j ).

(d) For similar electric fields at the radial distance
of the cortex there exists an upper bound to the
ratio of TEP-to-TMP mean-square scalp elec-
tric field given by the quantity R∞. A value
of approximately 318 was calculated for typical
human head three-shell model parameters. Note
that the root-mean-square electric field ratio
would therefore be 17.8.

(e) At low frequencies (0–200 Hz) the energetic cost
for a current source to generate electric fields of
appreciable magnitude within the brain region
are much higher for TMP as compared to TEP.

The energetic cost associated with TMP could be
made practical if electric fields of frequency greater
than 1 kHz were used to perturb brain function.
Recent publications suggest that this may be possible.
It is well known that suprathreshold electric fields
are able to robustly produce electrical nerve block

in peripheral nerves [6]. It has recently been shown
that amplitude modulation of suprathreshold kilo-
hertz frequency TEP electric fields [32] may allow
some degree of spatial localization with respect to
the radial variable r by means of spatially distributed
interference effects. The proposed mechanism is such
that the amplitude of the modulation, rather than the
amplitude and frequency of the electric field alone,
plays a role in the coupling to neurons. The amplitude
of the modulation can vary spatially thereby allow-
ing additional spatial localization of effects in a man-
ner not restricted by the extremum principle. Fur-
thermore subthreshold TEP at 2–5 kHz and 2.0 mA
has been shown to effect motor evoked potentials
with approximately the same efficacy as TEP in the
0–100 Hz range [10]. These results suggest that con-
tinuously applied kHz TMP electric fields may be an
effective and energetically feasible method to perturb
brain states and function.

It should be noted that if kHz amplitude modula-
tion does play a role in spatial focusing of TEP electric
fields then this method could allow one to increase
the spatial localization of electric field effects without
increasing the mean-squared electric field within the
scalp. Although this would be a welcome finding, kHz
TMP amplitude modulation methods could increase
the localization or amplitude of brain electric fields
amplitude obtained from kHz even further. However
this increase would come at a cost since, as has been
shown, TEP systems are less energetically costly as
compared to TMP systems.

Finally it should be noted the three shell spher-
ical shell model has many obvious shortcomings. For
example, the head and brain is more hemispherical
rather than spherical [22] and the brain can be fur-
ther partitioned in CSF, white matter and gray matter
regions each with different conductivities. However
this paper concerns generic comparisons between the
TEP and TMP methods which are accessible through
the three shell model. That said, extending the results
given here, to the degree that it may be possible, to a
more general model of the human head could be of
interest to the field of NIBS.

Data availability statement

No new data were created or analysed in this study.

Appendix A. Vector spherical harmonic
definitions and properties

The l= j− 1, j, j+ 1 VSH components are defined as
follows:

Y j+1
jm (θ,ϕ) =

√
j+ 1

2j+ 1

(
−r̂Yjm(θ,ϕ)+ θ̂

1

j+ 1

×
∂Yjm(θ,ϕ)

∂θ
+ ϕ̂

im

j+ 1

Yjm(θ,ϕ)

sinθ

)
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Y j
jm(θ,ϕ) =−θ̂

m√
j( j+ 1)

Yjm(θ,ϕ)

sinθ
− ϕ̂

i√
j( j+ 1)

×
∂Yjm(θ,ϕ)

∂θ

Y j−1
jm (θ,ϕ) =

√
j

2j+ 1

(
r̂Yjm(θ,ϕ)+ θ̂

1

j

∂Yjm(θ,ϕ)

∂θ

+ϕ̂
im

j

Yjm(θ,ϕ)

sinθ

)
(59)

The VSH components have many interesting prop-
erties. The following properties will be of use in the
derivations presented in this work:

r̂ ·Y j+1
jm (θ,ϕ) =−

(
j+ 1

2j+ 1

)1/2

Yjm(θ,ϕ)

r̂ ·Y j
jm(θ,ϕ) = 0

r̂ ·Y j−1
jm (θ,ϕ) =

(
j

2j+ 1

)1/2

Yjm(θ,ϕ) (60)

r̂×Y j+1
jm (θ,ϕ) = i

(
j

2j+ 1

)1/2

Y j
jm(θ,ϕ)

r̂×Y j
jm(θ,ϕ) = i

(
j+ 1

2j+ 1

)1/2

Y j−1
jm (θ,ϕ)

+ i

(
j

2j+ 1

)1/2

Y j+1
jm (θ,ϕ)

r̂×Y j−1
jm (θ,ϕ) = i

(
j+ 1

2j+ 1

)1/2

Y j
jm(θ,ϕ). (61)

Appendix B. Solving for the TEP E field

We will assume that σ2 = σ0 and write ϵ= σ1/σ0. In
all cases of interest the conductivity of the skull will
be much less than the conductivity of the scalp or
brain and therefore ϵ≪ 1. For our purpose we will
use the usual ratio of ϵ= 1/80= 0.0125. Applying
the boundary condition at r= 1 we have

j(1,θ,ϕ) · r̂=−σ2
∑
jm

[ j(2j+ 1)]1/2DjmY
j−1
jm (θ,ϕ) · r̂

−σ2
∑
jm

[( j+ 1)(2j+ 1)]1/2Ejm

×Y j+1
jm (θ,ϕ) · r̂

=−σ2
∑
jm

[
jDjm − ( j+ 1)Ejm

]
Yjm(θ,ϕ)

(62)

and using the VSH orthogonality relationship we get

− jDjm +( j+ 1)Ejm = Ijm (63)

where

Ijm =
1

σ2

ˆ 2π

0

ˆ π

0
j(1,θ,ϕ) · r̂ Y∗

jm(θ,ϕ) sinθdθdϕ.

(64)

Note that since ∇· j= 0 for a quasistatic system
then, according to Gauss’s Law, I00 = 0 therefore the
double summation indices are now j= 1, . . . ,∞ and
m=−j,…, j.

Applying the first boundary condition at r=α1

we have

σ1
∑
jm

[ j(2j+ 1)]1/2Bjmα
j−1
1 Y j−1

jm (θ,ϕ) · r̂

+σ1
∑
jm

[( j+ 1)(2j+ 1)]1/2Cjmα
−( j+2)
1

×Y j+1
jm (θ,ϕ) · r̂

= σ0
∑
jm

[ j(2j+ 1)]1/2Djmα
j−1
1 Y j−1

jm (θ,ϕ) · r̂

+σ0
∑
jm

[( j+ 1)(2j+ 1)]1/2Ejmα
−( j+2)
1

×Y j+1
jm (θ,ϕ) · r̂ (65)

or

σ1
∑
jm

[
jBjmα

j−1
1 − ( j+ 1)Cjmα

−( j+2)
1

]
Yjm(θ,ϕ)

= σ0
∑
jm

[
jDjmα

j−1
1 − ( j+ 1)Ejmα

−( j+2)
1

]
×Yjm(θ,ϕ) (66)

therefore

ϵjBjm − ϵ( j+ 1)Cjmα
−(2j+1)
1 − jDjm +( j+ 1)

× Ejmα
−(2j+1)
1 = 0. (67)

Applying the second boundary condition at
r=α1 we have∑

jm

[ j(2j+ 1)]1/2Bjmα
j−1
1 r̂×Y j−1

jm (θ,ϕ)

+
∑
jm

[( j+ 1)(2j+ 1)]1/2Cjmα
−( j+2)
1 r̂

×Y j+1
jm (θ,ϕ)

=
∑
jm

[ j(2j+ 1)]1/2Djmα
j−1
1 r̂×Y j−1

jm (θ,ϕ)

+
∑
jm
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−( j+2)
1 r̂

×Y j+1
jm (θ,ϕ) (68)

or∑
jm

[ j( j+ 1)]1/2Bjmα
j−1
1 Y j

jm(θ,ϕ)

+
∑
jm

[ j( j+ 1)]1/2Cjmα
−( j+2)
1 Y j

jm(θ,ϕ)

=
∑
jm

[ j( j+ 1)]1/2Djmα
j−1
1 Y j

jm(θ,ϕ)

+
∑
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[ j( j+ 1)]1/2Ejmα
−( j+2)
1 Y j

jm(θ,ϕ) (69)
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which yields

Bjm +Cjmα
−(2j+1)
1 −Djm − Ejmα

−(2j+1)
1 = 0. (70)

Similarly applying the first and second boundary
conditions at r=α0 yields:

jAjm − ϵjBjm + ϵ( j+ 1)Cjmα
−(2j+1)
0 = 0, (71)

and

Ajm −Bjm −Cjmα
−(2j+1)
0 = 0. (72)

We will write equations (63), (67) and (70)–(72)
in the following compact form

0 0 0 d j
1 e j1

0 b j
2 c j2 d j

2 e j2
0 b j

3 c j3 d j
3 e j3

a j
4 b j

4 c j4 0 0

a j
5 b j

5 c j5 0 0



Ajm

Bjm

Cjm

Djm

Ejm

=


Ijm
0
0
0
0

 (73)

where

d j
1 =−j e j1 = ( j+ 1)

b j
2 = ϵj c j2 =−ϵ( j+ 1)α−(2j+1)

1 d j
2 =−j e j2 = ( j+ 1)α−(2j+1)

1

b j
3 = 1 c j3 = α

−(2j+1)
1 d j

3 =−1 e j3 =−α
−(2j+1)
1

a j
4 = j b j

4 =−ϵj c j4 = ϵ( j+ 1)α−(2j+1)
0

a j
5 = 1 b j

5 =−1 c j5 =−α
−(2j+1)
0 .

(74)

UsingCramer’s Rule the solution of this simultaneous
set of equations yields the results given in equations
(12)–(14).

Appendix C. Solving for the TMP E field

Here we apply boundary conditions to the TMP elec-
tric field, as given by equations (23)–(25), to determ-
ine the coefficients Ajm, Bjm, Cjm, Djm and Ejm. The
boundary conditions are still those given by equations
(9) and (10) albeit with j · r̂= 0. Applying the bound-
ary condition at r= 1 gives:

0=−
∑
jm

[
[ j(2j+ 1)]1/2DjmY

j−1
jm (θ,ϕ)

+[( j+ 1)(2j+ 1)]1/2EjmY
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−
∑
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1
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∂J jjm
∂t
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1
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×
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Y j−1
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]
· r̂
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∑
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(
j

2j+ 1

)1/2 1
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×
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∂t
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or

− jDjm +( j+ 1)Ejm =

(
j

2j+ 1

)1/2 1
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∂J j−1
jm

∂t
.

(76)

Applying the first boundary condition of
equation (10) at r=α1 we have
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jm

∂t
Y j−1
jm (θ,ϕ)

]
· r̂

= σ0
∑
jm

[
[ j(2j+ 1)]1/2Djmα

j−1
1 Y j−1

jm (θ,ϕ)

+ [( j+ 1)(2j+ 1)]1/2Ejmα
−( j+2)
1

×Y j+1
jm (θ,ϕ)

]
· r̂

+σ0
∑
jm

[
α

j
1

2j+ 1

∂J jjm
∂t
Y j
jm(θ,ϕ)+

α
j−1
1

2j− 1

×
∂J j−1

jm

∂t
Y j−1
jm (θ,ϕ)

]
· r̂ (77)

or

σ1
∑
jm

[
jBjmα

j−1
1 Yjm(θ,ϕ)− ( j+ 1)Cjmα

−( j+2)
1

×Yjm(θ,ϕ)
]
+(σ1 −σ0)

∑
jm

[
j

2j+ 1

]1/2

× α
j−1
1

2j− 1

∂J j−1
jm

∂t
Yjm(θ,ϕ)
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= σ0
∑
jm

[
jDjmα

j−1
1 Yjm(θ,ϕ)− ( j+ 1)Ejm

×α
−( j+2)
1 Yjm(θ,ϕ)

]
(78)

or

σ1

[
jBjmα

j−1
1 − ( j+ 1)Cjmα

−( j+2)
1

]
+(σ1 −σ0)

×
[

j

2j+ 1

]1/2
α

j−1
1

2j− 1

∂J j−1
jm

∂t

= σ0

[
jDjmα

j−1
1 − ( j+ 1)Ejmα

−( j+2)
1

]
(79)

ϵjBjm − ϵ( j+ 1)Cjmα
−(2j+1)
1 − jDjm +( j+ 1)Ejm

×α
−(2j+1)
1 = (1− ϵ)

[
j

2j+ 1

]1/2 1

2j− 1

∂J j−1
jm

∂t
.

(80)

Applying the second boundary condition of equation
(10) at r=α1 we have∑
jm

[
[ j(2j+ 1)]1/2Bjmα

j−1
1 Y j−1

jm (θ,ϕ)

+[( j+ 1)(2j+ 1)]1/2Cjmα
−( j+2)
1 Y j+1

jm (θ,ϕ)
]
× r̂

=
∑
jm

[
[ j(2j+ 1)]1/2Djmα

j−1
1 Y j−1

jm (θ,ϕ)

+ [( j+ 1)(2j+ 1)]1/2Ejmα
−( j+2)
1

× Y j+1
jm (θ,ϕ)

]
× r̂ (81)

or∑
jm

[
[ j( j+ 1)]1/2Bjmα

j−1
1 Y j

jm(θ,ϕ)+ [ j( j+ 1)]1/2

× Cjmα
−( j+2)
1 Y j

jm(θ,ϕ)
]

=
∑
jm

[
[ j( j+ 1)]1/2Djmα

j−1
1 Y j

jm(θ,ϕ)

+[ j( j+ 1)]1/2Ejmα
−( j+2)
1 Y j

jm(θ,ϕ)
]
(82)

or

Bjm +Cjmα
−(2j+1)
1 −Djm − Ejmα

−(2j+1)
1 = 0. (83)

Similarly the first and second boundary condi-
tions applied at r=α0 yield:

jAjm − ϵjBjm + ϵ( j+ 1)Cjmα
−(2j+1)
0

= (ϵ− 1)

(
j

2j+ 1

)1/2 1

2j− 1

∂J j−1
jm

∂t
, (84)

and

Ajm −Bjm −Cjmα
−(2j+1)
0 = 0. (85)

We write equations (78), (80) and (83)–(85) as:
0 0 0 d j

1 e j1
0 b j

2 c j2 d j
2 e j2

0 b j
3 c j3 d j

3 e j3
a j
4 b j

4 c j4 0 0

a j
5 b j

5 c j5 0 0



Ajm

Bjm

Cjm

Djm

Ejm

= Ijm


1

(1− ϵ)
0

(ϵ− 1)
0


(86)

where

d j
1 =−j e j1 = ( j+ 1)

b j
2 = ϵj c j2 =−ϵ( j+ 1)α−(2j+1)

1 d j
2 =−j e j2 = ( j+ 1)α−(2j+1)

1

b j
3 = 1 c j3 = α

−(2j+1)
1 d j

3 =−1 e j3 =−α
−(2j+1)
1

a j
4 = j b j

4 =−ϵj c j4 = ϵ( j+ 1)α−(2j+1)
0

a j
5 = 1 b j

5 =−1 c j5 =−α
−(2j+1)
0

(87)

and

Ijm =

(
j

2j+ 1

)1/2 1

2j− 1

∂J j−1
jm

∂t
. (88)

UsingCramer’s Rule the solution of this simultan-
eous set of equations is:

Ajm = Bjm = Djm =−
Ijm
j

Cjm = Ejm = 0. (89)

By substituting equations (89) into equations
(23) through (25) the following expression

for the electric field in regions 0, 1 and 2 is
obtained:

e(r,Ω, t) =−
∑
jm

r j

2j+ 1

∂J jjm
∂t
Y j
jm(θ,ϕ). (90)

In fact for an arbitrary number of concentric spher-
ical conductors the expression for E(r,θ,ϕ, t) in all
regions will be given by equation (90). The electric
field due to the surface charge exactly cancels the
l= j− 1 components of the induced part of the elec-
tric field.
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Appendix D. Calculating Ijm for typical
electrode pairs

Assume there are two TEP electrodes, the first will
have outgoing (directed along an outward oriented
unit normal vector at the surface of the three shell
sphere) current and the second will have ingoing cur-
rent. The center of the first electrode is located at
the upper pole of the sphere and the center of the
second electrode is located at some angle β relat-
ive to the z-axis (the z-axis runs through the poles).
The perimeter of each electrode subtends an angle θo
(from its center) on the surface of the sphere and it
is assumed that the radial component of the current
density provided by the electrodes are uniform and of
magnitude Io.

For the single electrode located at the pole with
out-going uniform current density:

I+jm = Io

ˆ θo

0

ˆ 2π

0
Y∗
jm(θ,ϕ) sinθdϕdθ

= Io

√
2j+ 1

4π

( j−m)!

( j+m)!

ˆ 2π

0
eimϕdϕ

ˆ θo

0
Pmj

× (cosθ) sinθdθ

= 2πδm0Io

√
2j+ 1

4π

ˆ cosθo

1
Pj(cosθ)dcosθ

= δm0Io

√
π

2j+ 1
[Pj+1(cosθ)− Pj−1(cosθ)]

cosθo
1

= δm0Io

√
π

2j+ 1
[Pj+1(cosθo)− Pj−1(cosθo)

− Pj+1(1)+ Pj−1(1)]

= δm0Io

√
π

2j+ 1
[Pj+1(cosθo)− Pj−1(cosθo)]

= δm02πIo

√
1

2j+ 1

[√
1

2j+ 3
P̃j+1(cosθo)

−

√
1

2j− 1
P̃j−1(cosθo)

]
= δm0I

+
j0 (91)

where the P̃j =
√

2j+1
4π Pj are the renormalized

(numerically stable) Legendre Functions and the
definition of I+j0 should be obvious. The I+jm are by
definition the coefficients of a spherical harmonic
expansion of the outgoing current contribution to the
function I+(θ,ϕ) = J(r2,Ω) · r̂ and therefore using
equation (91) we can write

I+(θ,ϕ) =
∑
j

I+j0 Yj0(θ,ϕ) =
∑
j

√
2j+ 1

4π
I+j0

× Pj(cosθ). (92)

The contribution to Ijm by a second electrode of the
same size rotated to a position β relative to the pole
with ingoing uniform current density can be found by

rotating by β the function I+(θ,ϕ) for the electrode
at the pole given by equation (92) and changing sign.
The Y j0 spherical harmonic transforms under a rota-
tion operator D̂(α,β,γ) (where α, β and γ are Euler
angles) according to:

D̂(α,β,γ)Yj0(θ,ϕ) =

√
4π

2j+ 1

j∑
m=−j

Yjm(θ,ϕ)

×Y∗
jm(β,α) (93)

therefore the ingoing contribution to I− due to the
second electrode is

I−(Ω) =−D̂(α,β,γ)I+(Ω)

=−
∑
j

I+j0 D̂(α,β,γ)Yj0(θ,ϕ)

=−
∑
j

j∑
m=−j

I+j0

√
4π

2j+ 1
Yjm(θ,ϕ)Y

∗
jm(β,α)

(94)

and I−jm, the contribution to Ijm by the ingoing current
density of the second electrode, is given by

I−jm =−
ˆ −1

1

ˆ 2π

0
I−(θ,ϕ)Y∗

jm(θ,ϕ)dϕ dcosθ

=−I+j0

√
4π

2j+ 1
Y∗
jm(β,α). (95)

Here we assume that α= 0 and allow β to vary the
position of the second electrode in which case:

I−jm =−I+j0

√
4π

2j+ 1
Y∗
jm(β,0)

=−I+j0

√
( j−m)!

( j+m)!
Pmj (cosβ) (96)

and therefore

Ijm = I+j0

[
δm0 −

√
( j−m)!

( j+m)!
Pmj (cosβ)

]

= I+j0

[
δm0 −

√
4π

2j+ 1
P̃mj (cosβ)

]
(97)

where the definition of the renormalized associated
Legendre functions P̃mj should be obvious.

Appendix E. Calculating J jjm for circular
and figure-8 TMS coils

The specifications of TMS coils, which contain many
windings, are usually given in terms of an inner and
outer radius for a simple circular coil. Here the simple
circular coil (see figure 6) is approximated by a single
winding at the average of the inner and outer radii.
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Assume the current density j is a thin ring of cur-
rent of amplitude I(t) and radius rc (in units of r2)
inscribed on a plane tangent to the outer surface of the
scalp region and centered on the vertical axis. Then

j= I(t)eϕδ(r− ρo)δ(cosθ− cosθo)r
−1 sinθ (98)

where ρo =
√

r2c + 1 and cosθo = ρ−1
o . It follows that

J jjm =
4πr22
c2

˚
1

r ′j+1
j(r ′,θ ′,ϕ ′) ·Y∗jjm(θ

′,ϕ ′)r ′2

× dr ′dϕ ′dcosθ ′

=
4πr22
c2

I

˚
1

r ′j+1
δ(r ′ − ρo)δ(cosθ

′ − cosθo)

× sinθ ′eϕ ·Y∗jjm(θ
′,ϕ ′)r ′dr ′dϕ ′dcosθ ′

=
4πr22
c2ρ j

o

I

¨
δ(cosθ ′ − cosθo) sinθ

′eϕ

·Y∗jjm(θ
′,ϕ ′)dϕ ′dcosθ ′

=
i√

j( j+ 1)

4πr22
c2ρ j

o

I

¨
δ(cosθ ′ − cosθo) sinθ

′

×
∂Y∗

jm

∂θ ′ dϕ
′dcosθ ′. (99)

Since

∂Yjm

∂θ ′ =
1

2

√
j( j+ 1)−m(m+ 1)Yjm+1e

−iϕ

− 1

2

√
j( j+ 1)−m(m− 1)Yjm−1e

iϕ (100)

then

J jjm = i
2πr22 I

c2ρ j
o

(
j( j+ 1)−m(m+ 1)

j( j+ 1)

)1/2

×
¨

δ(cosθ ′ − cosθo) sinθ
′Y∗

jm+1(θ
′,ϕ ′)eiϕ

′

× dϕ ′dcosθ ′

− i
2πr22 I

c2ρ j
o

(
j( j+ 1)−m(m− 1)

j( j+ 1)

)1/2

×
¨

δ(cosθ ′ − cosθo) sinθ
′Y∗

jm−1(θ
′,ϕ ′)

× e−iϕ ′
dϕ ′dcosθ ′

= i
2πr22 I

c2ρ j
o

(
j( j+ 1)−m(m+ 1)

j( j+ 1)

)1/2

×
¨

δ(cosθ ′ − cosθo) sinθ
′e−imϕP̃m+1

j (cosθ)

× dϕ ′dcosθ ′

− i
2πr22 I

c2ρ j
o

(
j( j+ 1)−m(m− 1)

j( j+ 1)

)1/2

×
¨

δ(cosθ ′ − cosθo) sinθ
′e−imϕP̃m−1

j

× (cosθ)dϕ ′dcosθ ′

= iδm0
4π 2r22 I

c2ρ j
o

ˆ
δ(cosθ ′ − cosθo) sinθ

′P̃1j

× (cosθ)dcosθ ′

− iδm0
4π 2r22 I

c2ρ j
o

ˆ
δ(cosθ ′ − cosθo) sinθ

′P̃−1
j

× (cosθ)dcosθ ′

= iδm0
4π 2r22 I

c2ρ j
o

√
1− cos2 θoP̃

1
j (cosθo)

− iδm0
4π 2r22 I

c2ρ j
o

√
1− cos2 θoP̃

−1
j (cosθo)

= iδm0
8π 2r22 I

c2ρ j
o

√
1− cos2 θoP̃

1
j (cosθo) (101)

where the identities Yjm(θ,ϕ) = eimϕP̃mj (cosθ) and

P̃−m
j (cosθ) = (−1)mP̃mj (cosθ) have been used.
If a second coil is added with its current circu-

lating in the direction opposite that of coil 1 then a
figure-of-eight type coil can be obtained. The posi-
tion and orientation of coil 2 is obtained by rotating
coil 1 by an angle β= 2θo from the z-axis such that
the two coils osculate (see figure 6) at one point. For
this figure-8 coil J jjm = J j+jm − J j−jm where J j+jm is the con-
tribution from coil 1 (given by equation (101)) and
J j−jm is the contribution from coil 2. J j−jm can be found
by performing either a rotation of the current dens-
ity by angle β or a rotation of the spherical harmonic
Y∗jjm(θ,ϕ) by angle−β. Using the later approach

J j−jm =
4πr22
c2

˚
1

r ′j+1
j(r ′,θ ′,ϕ ′)

·
[
D̂(0,−β,0)Y∗jjm(θ

′,ϕ ′)
]
r ′2dr ′dϕ ′dcosθ ′

=
4πr22
c2ρ j

o

I

¨
δ(cosθ ′ − cosθo)eϕ

·
[
D̂(0,−β,0)Y∗jjm(θ

′,ϕ ′)
]
sinθ ′dϕ ′dcosθ ′

=
4πr22
c2ρ j

o

I

¨
δ(cosθ ′ − cosθo)

∑
m ′

D j
m ′m

× (0,−β,0)eϕ ·Y∗jjm ′(θ
′,ϕ ′) sinθ ′dϕ ′dcosθ ′

=
i4πI√
j( j+ 1)

r22
c2ρ j

o

¨
δ(cosθ ′ − cosθo)

∑
m ′

D j
m ′m

× (0,−β,0)
∂Y∗

jm ′

∂θ ′ sinθ ′dϕ ′dcosθ ′ (102)

where D̂(0,−β,0) is the rotation operator with
Euler angle arguments and D j

m ′m are the Wigner D-
functions [19]. But the integration with respect to ϕ ′

yields

ˆ
∂Y∗

jm ′

∂θ ′ dϕ ′ =
1

2

ˆ √
j( j+ 1)−m ′(m ′ + 1)

×Y∗
jm ′+1(θ

′,ϕ ′)eiϕ
′
dϕ ′

− 1

2

ˆ √
j( j+ 1)−m ′(m ′ − 1)

×Y∗
jm ′−1(θ

′,ϕ ′)e−iϕ ′
dϕ ′

=
1

2

ˆ √
j( j+ 1)−m ′(m ′ + 1)
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× P̃m
′+1

j (cosθ ′)e−im ′ϕ ′
dϕ ′

− 1

2

ˆ √
j( j+ 1)−m ′(m ′ − 1)

× P̃m
′−1

j (cosθ ′)eim
′ϕ ′

dϕ ′

= πδm ′0

√
j( j+ 1)

[
P̃1j (cosθ

′)

−P̃−1
j (cosθ ′)

]
= 2πδm ′0

√
j( j+ 1)P̃1j (cosθ

′). (103)

Substituting equation (103) into (102) and
making use of the identity D j

0m(α,β,γ) =√
4π/(2j+ 1)Yj,−m(β,γ) [19] the result is obtained:

J j−jm = i
8π 2r22
c2ρ j

o

ID j
0m(0,−β,0)

ˆ
δ(cosθ ′ − cosθo)

× P̃1j (cosθ
′) sinθ ′dcosθ ′

= i
8π 2r22
c2ρ j

o

I
√
1− cos2 θoD

j
0m(0,−β,0)P̃1j (cosθo)

= i
8π 2r22
c2ρ j

o

I
√
1− cos2 θo

√
4π/(2j+ 1)Yj,−m

× (−β,0)P̃1j (cosθo)

= i(−1)m
8π 2r22
c2ρ j

o

I
√
1− cos2 θo

√
4π/(2j+ 1)

× P̃mj (cosβ)P̃
1
j (cosθo) (104)

which reduces to the result given by equation (101)
when β= 0. For the figure-8 coil the coefficients J jjm
are then given by:

J jjm = J j+jm − J j−jm = i
8π 2r22
c2ρ j

o

I
√
1− cos2 θo

×

[
δm0 − (−1)m

√
4π

2j+ 1
P̃mj

× (cos2θo)

]
P̃1j (cosθo).

(105)
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