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Abstract

Pronounced activity is observed in both hemispheres of the motor cortex during preparation

and execution of unimanual movements. The organizational principles of bi-hemispheric

signals and the functions they serve throughout motor planning remain unclear. Using an

instructed-delay reaching task in monkeys, we identified two components in population

responses spanning PMd and M1. A “dedicated” component, which segregated activity at

the level of individual units, emerged in PMd during preparation. It was most prominent fol-

lowing movement when M1 became strongly engaged, and principally involved the contra-

lateral hemisphere. In contrast to recent reports, these dedicated signals solely accounted

for divergence of arm-specific neural subspaces. The other “distributed” component mixed

signals for each arm within units, and the subspace containing it did not discriminate

between arms at any stage. The statistics of the population response suggest two functional

aspects of the cortical network: one that spans both hemispheres for supporting preparatory

and ongoing processes, and another that is predominantly housed in the contralateral hemi-

sphere and specifies unilateral output.

Author summary

The motor cortex of the brain primarily controls the opposite side of the body, yet neural

activity in this area is often observed during movements of either arm. To understand the

functional significance of these signals we must first characterize how they are organized

across the neural network. Are there patterns of activity that are unique to a single arm?

Are there other patterns that reflect shared functions? Importantly, these features may

change across time as motor plans are developed and executed. In this study, we analyzed

the responses of individual neurons in the motor cortex and modeled their patterns of co-

activity across the population to characterize the changes that distinguish left and right

arm use. Across preparation and execution phases of the task, we found that signals
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became gradually more segregated. Despite many neurons modulating in association with

either arm, those that were more dedicated to a single (typically contralateral) limb

accounted for a disproportionately large amount of the variance. However, there were

also weaker patterns of activity that did not distinguish between the two arms at any stage.

These results reveal a heterogeneity in the motor cortex that highlights both independent

and interactive components of reaching signals.

Introduction

In the primate cortex, direct control of arm movement is primarily mediated by contralateral

descending projections [1–3]. However, numerous studies have observed activity changes in

the motor cortex during movements of the ipsilateral arm [4–11] and hand [12–14]. The func-

tional role of this ipsilateral activity has been the subject of considerable debate, with hypothe-

ses ranging from a role in postural support, bimanual coordination, or an extrapyramidal

control signal for unimanual movements.

Neurons in the primate dorsal premotor cortex (PMd) play a critical role in motor prepara-

tion [6,8,12,15,16]. Interestingly, their response properties and degree of laterality appear to

change across the course of preparation. For example, within PMd, individual units exhibit a

transition from effector-independent to effector-dependent encoding between preparatory

and execution phases of reaching. In contrast, units in primary motor cortex (M1) mainly

become active during movement itself and show a pronounced contralateral bias [8]. This sug-

gests a transition from abstract planning to explicit specification of motor output parameters

in the signals of individual neurons. A similar transition has been shown in the activation of

different cell-types within rodent motor areas [17,18]. These studies have found that neurons

with intracortical projections show little lateral bias, particularly during pre-movement phases.

In contrast, neurons with descending output display much stronger laterality, especially just

before and during movement. This adds yet another level of granularity in the discussion of

lateralized motor function. Collectively, these single-unit studies support a notion that there

exist two distinct components within the motor cortex: one that is bilateral and likely involved

in abstract processing, and another that is dedicated to a single side of the body for execution.

The classical perspectives outlined above have been revisited in studies that focus on popu-

lation-level analysis, considering instead how computations might be reflected in the way the

network coordinates activity. Low-dimensional representations of large-scale neural record-

ings can be used to characterize these network patterns, revealing changes in covariance struc-

ture across behavioral settings that are not evident when looking at single neurons in isolation

[19]. Ostensibly, these changes reflect reorganization of the population as it engages in differ-

ent computational processes. Using these methods, pre-movement activity has been shown to

evolve within an “output-null” subspace towards an optimal initial population state [20–22].

This initial state is advantageously positioned for engaging the internal dynamics of the net-

work to produce patterned activity in an “output-potent” subspace for driving movement [23–

25]. There is some evidence that bilateral activity may support these preparatory and dynamic

properties [26,27]. Similar to the output-null and output-potent subspaces, arm-specific sub-

spaces have also been observed in M1 during rhythmic movements [10] and in response to

joint perturbations [11]. It remains unclear precisely what organizational principles produce

these arm-specific subspaces, whether signals are fully separated at the level of the population,

and how such properties develop across preparation and movement.
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There are two fundamental and mutually non-exclusive ways that population signals may

specify the selected arm across preparation and movement. (1) Signals may consolidate within

dedicated sub-populations for each arm (i.e., within hemispheres, brain areas, or cell-types).

(2) Signals for each arm may be distributed across the same units yet maintain unique covari-

ance structure that separates them along arm-specific neural dimensions. Importantly, either

of these architectures provides a way for downstream targets to discriminate signals and also

yields the mathematical result of divergent subspaces. The first method is necessarily true: con-

tralateral biases have been consistently observed during movement and, to a lesser extent, dur-

ing preparation as well. Such lateral biases will trivially orthogonalize arm signals. The

question is whether the second method is also true. Either signals that are mixed within units

become separated (arm-specific) in the population readout, or they exist within a space where

the same patterns of activity are involved in computations relevant to both arms. This is a vital

distinction to make, as it constrains the possible roles that bilateral activity can play at each

stage of processing and may point to an important heterogeneity in the population statistics.

In the present study, we recorded large populations of single-units in PMd and M1 bilater-

ally while monkeys performed an instructed-delay unimanual reaching task. As activity

emerged during preparation, there was a tendency for units with stronger arm preference to

be more highly modulated, therefore accounting for a larger proportion of the population vari-

ance. As a result, the signals for each arm were largely segregated, primarily within contralat-

eral PMd. During the transition to movement, M1 became more prominently involved and

the signals for each arm became increasingly segregated. This unit-level segregation caused the

subspaces corresponding to each arm to diverge across the trial. However, we did observe tar-

get-specific information that was not only present in these segregated signals, but also mixed

within individual units, indicating incomplete separation of control signals for each side.

Importantly, the subspace containing this information did not segregate signals for the two

arms at any stage. Taken together, the results point to two primary components in the popula-

tion response: (1) A dedicated component that develops across preparation, reaches a maxi-

mum during movement, and mirrors the lateralized anatomy of corticospinal output with its

contralateral bias. (2) A distributed component that represents far less variance, particularly

during movement, and provides a space in which bilateral control signals coexist and may

readily interact.

Results

Behavior

Two macaque monkeys were trained to perform an instructed-delay reaching task in 3-D

space (Fig 1A). Reaching movements were freely performed in an open area while kinematics

were recorded using optical motion tracking. Visual feedback of endpoint position and task

cues were provided through a virtual 3-D display. Each trial had three phases (Fig 1B). For the

Rest phase, the monkey placed both hands in start targets positioned near the torso and

remained still for 500 ms. For the Instruct phase, an instructional cue appeared at one of six

target locations. The color of the cue specified the required hand for the forthcoming trial. The

monkey was required to keep both hands in the rest positions while the cue remained visible

for a variable interval (500–1500 ms). The Move phase was initiated when the start position

marker for the reaching hand disappeared and the cue at the target location increased in size,

which signaled the animal to reach. The monkey received a juice reward if it accurately

reached the target and maintained the final position for 250 ms, while keeping the non-cued

hand at its start position for the duration of the trial. 300ms representative windows from each

phase were used in data analysis.
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Trials were blocked for each arm, with each block consisting of 2 trials per target in a ran-

domized order (i.e. alternating 2 trials per target for the left arm, then 2 trials per target for the

right; Fig 1C).

Average success rates were above 95% for both hands in both monkeys. Overall, reaction

times averaged 308 ms for monkey O and 333 ms for monkey W. Distributions of reaction

times for each hand/target combination are displayed in Fig 1D, which were fairly consistent

across targets. Reach biomechanics varied across the workspace, resulting in slightly different

reach durations across targets (Fig 1D). In terms of kinematics, the initial feed-forward por-

tions of reaches were smooth and stereotyped (Fig 1E). There was a very slight but significant

increase in the speed of the non-reaching hand between Rest (mean–monkey O: 1.1 mm/s;

monkey W: 2.9 mm/s) and Move (mean–monkey O: 3.6 mm/s; monkey W: 7.6 mm/s) phases

Fig 1. Behavior. (A) Monkeys reached to one of six virtual targets, indicated by grey spheres in the cartoon. During

the task these would be invisible until one appeared to instruct the reach. (B) Trials consisted of 3 phases. Each trial

was initiated by placing both hands in start targets and remaining still for 500ms (Rest phase). A small target then

appeared at the location of the future reach in a color that indicated which hand to use. The monkey remained still

during cue presentation for 0.5–1.5s (Instruct phase). The start target for the reaching hand then disappeared while the

reach target enlarged to cue movement (Move phase). (C) Hand assignments followed a blocked schedule. (D)

Distributions of reaction times (top row) and reach durations (bottom row) for each monkey, hand, and target. Left

hand reaches in yellow, right in purple. Horizontal black bars show means, red bars show medians. (E) Speed profiles

during left- or right-hand trials. Both reaching and stationary hands are plotted in each, although stationary speeds are

near 0 and hardly visible. Vertical red lines indicate threshold crossing to mark movement onset. Monkey O main,

monkey W inset. Mean +/- standard deviation.

https://doi.org/10.1371/journal.pcbi.1009615.g001
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of the task (permutation test–monkey O: p = 1.0e-4; monkey W: p = 1.0e-4). We note that the

task was designed to mimic natural reaching without the use of physical restraints. As such, we

assume the small movements in the non-reaching arm are part of the normal behavioral reper-

toire occurring during natural unimanual reaching. Nonetheless, we will address any reason-

able impacts these small movements may have in our neural analyses.

Arm-dedicated units emerge across task phases while the overall

distribution remains relatively arm-neutral

We recorded 408 and 112 single-units in the caudal aspect of dorsal premotor cortex (PMd) in

monkeys O and W, respectively, and 303 and 262 single-units in primary motor cortex (M1)

(Fig 2). Since both arms were used in the behavior, we can evaluate the ipsi- and contralateral

responses in each unit. Units were pooled across hemispheres in the analysis, with contralat-

eral summaries reflecting the collection of responses during trials performed with the contra-

lateral arm, and vice-versa for trials performed with the ipsilateral arm. PMd and M1 units

were analyzed separately. Firing rates were soft-normalized using the Rest phase mean and

standard deviation, and modulation strength is expressed as the mean squared value of these

standard scores within the window of interest. This modulation metric is essentially variance,

and may be thought of as variance for most purposes.

Fig 2. Neural recordings. (A) MRI-based volume renderings of the skull and target brain regions. Top panel shows

the arrangement of the two chambers. Two bottom rows show segmented brain regions within the cranial window of

each chamber, for each monkey. Region boundaries were assigned based on [28]. Red—somatosensory cortex; blue—

primary motor cortex (M1); pink—dorsal premotor cortex (PMd); green—ventral premotor cortex; white—frontal eye

field. CS—central sulcus; SPCD—superior pre-central dimple; ArS—arcuate sulcus. Grey ellipses indicate regions

sampled by recordings. (B) Interlaminar recordings were obtained using V- and S- probes (Plexon, Inc., Dallas, TX)

with 24–32 electrodes aligned perpendicular to the cortical surface. Example waveforms were all simultaneously

recorded from a single probe. (C) MRI coronal slice, monkey O. 3mm black bar is approximately equal to the distance

spanned by electrodes on 32-channel probes. Same landmark labels as in (A).

https://doi.org/10.1371/journal.pcbi.1009615.g002
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We first analyzed single units to determine the degree of modulation during the Instruct

and Move phases of the task (Fig 3). Following instruction, many units in both PMd and M1

became significantly modulated for movements of one or both arms (S1 Table). Units in PMd

were, on average, more strongly modulated during the Instruct period than those in M1 (Fig

4A; permutation test, including separate values for each arm–monkey O: p = 8.4e-3; monkey

W: p = 7.0e-4). This relationship reversed following movement, with average modulation in

M1 becoming stronger than PMd (Fig 4A; permutation test–monkey O: p = 0.015; monkey W:

p = 0.018). These results are in line with the view that PMd plays a privileged role in motor

preparation. The distributions of modulation values were heavy-tailed and contained some

notably extreme values; however, we chose not to apply any outlier criteria. Controls are per-

formed later in our population-level analyses to ensure that results are representative of trends

across the entire population rather than a few extreme units.

We next considered the laterality of each unit by quantifying the relative modulation

observed during ipsi- and contralateral trials. We expressed each unit’s arm preference on a

scale from -1 to 1, with 1 indicating exclusive contralateral modulation and -1 indicating

Fig 3. Firing rate traces of example neurons and population means. (A-C) Trial-averaged firing rates for three

neurons from the left hemisphere. Each line color represents a different target according to the color-coding in the top

right. The time windows used to represent each phase in the analysis are indicated by the horizontal bars at the top,

and the modulation strength values for each phase are included as annotations (M). Traces display mean +/- SEM. (A)

An M1 unit exclusively modulated during ipsilateral movements. Instruct arm preference of -0.84, Move arm

preference -0.99. (B) A PMd unit with both Instruct and Move phase modulation for both arms. Instruct arm

preference of 0.56, Move arm preference 0.11. (C) A PMd unit with modest contralateral modulation during the

Instruct phase and strong contralateral modulation during movement, but no modulation on ipsilateral trials. Instruct

arm preference of 0.63, Move arm preference 0.97. (D,E) Mean firing rates for PMd and M1 populations, +/- SEM. The

full distributions of modulation and arm preference values for the two populations are provided in Fig 4. These means

were calculated over all units and targets; as such, the means reflect the net excitation-inhibition, which is not the same

as the modulation strength.

https://doi.org/10.1371/journal.pcbi.1009615.g003
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exclusive ipsilateral modulation (Fig 4B). Although the cue for the forthcoming trial had yet to

be presented during the Rest phase, arm selection could be implied from the blocked task

structure (Fig 1C). However, except for a very small effect in PMd of monkey O (one-sample

t-test–μRest = 0.06, p = 2.6e-4), there was no significant contralateral bias observed during the

Rest phase in either brain area for both monkeys. Despite the lack of contralateral bias, both

monkeys entered arm-specific population states during the Rest phase, which was more pro-

nounced in PMd populations (mean difference between left and right arm firing rates–monkey

O PMd: 1.74Hz, M1: 1.59Hz; monkey W PMd: 1.28Hz, M1: 0.92Hz; Fig 4B). For trials in

which the same hand was repeated from the previous trial, it was possible to classify the hand

for the forthcoming movement from the population activity (S1 Fig). Although the differences

in activity during Rest were relatively small when compared to the subsequent task phases,

they point to an early specification of the reaching arm that provides context for subspace anal-

yses we present below.

The emergence of laterality after the onset of the instruction cue mirrored the emergence of

general unit modulation: A contralateral bias was present in PMd during the Instruct phase

and then became present in both PMd and M1 during movement. Mean arm preference in

PMd showed a modest but significant bias in the contralateral direction during the Instruct

phase (one-sample t-test–monkey O: μInstruct = 0.10, p = 1.2e-6; monkey W: μInstruct = 0.15,

p = 2.5e-4) and showed no significant change between Instruct and Move (paired-sample t-

test–monkey O: μMove = 0.14, p = 0.07; monkey W: μMove = 0.13, p = 0.65). Mean arm prefer-

ence in M1 did not show a significant contralateral bias until the Move phase (one-sample t-

test–monkey O: μInstruct = 0.02, p = 0.20; μMove = 0.05, p = 0.049; monkey W: μInstruct = 0.02,

p = 0.33; μMove = 0.18, p = 1.3e-8).

Fig 4. An increasing number of arm-dedicated units emerge with each task phase. (A) Cumulative distribution of

single-unit modulation during each phase, arm. Left panel PMd, right panel M1. Large values cut off by plot: monkey

O Contra Move [134(PMd), 133(PMd), 104(PMd)], Ipsi Move [234(M1), 181(M1), 130(M1)]; monkey W Contra

Move [125(M1)]. Monkey O main, monkey W inset. (B) Distributions of arm preferences during each phase. Negative

values are ipsi-preferring (grey background), positive values are contra-preferring (white background). Solid black

vertical lines indicate the mean of each distribution, and dashed lines mark the upper quartile.

https://doi.org/10.1371/journal.pcbi.1009615.g004
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While shifts in the means were modest, changes in arm preference across phases were

most evident in the tails of the distribution, corresponding to units that strongly preferred

one arm or the other (Fig 4B). These arm-dedicated units typically preferred the contralateral

arm, demonstrated by increased occupancy in the contralateral tails of the arm preference

distributions; however, a small proportion of the population was exclusively modulated dur-

ing ipsilateral trials as well (Fig 4B). Despite much of the population remaining arm-neutral

(arm preference near 0) or preferring the ipsilateral arm, the emergence of strongly contra-

dedicated units was sufficient to drive contralateral shifts in the population mean. In sum-

mary, despite much of the population remaining arm-neutral, an increasing number of

highly arm-dedicated units emerged with each task phase, primarily favoring the contralat-

eral arm.

Modulation preferentially occurs within arm-dedicated units

There are two primary means by which population signals can specify the selected arm at each

phase. (1) The population may maintain unique covariance structure for each arm that sepa-

rates signals along different neural dimensions, even if the constituent units are equally modu-

lated for both arms. For example, consider two neurons that are positively correlated for

movements of one arm, but negatively correlated for the other arm. When summed, their

activity would cancel out in the latter case, whereas it would be amplified in the former. As

such, it would provide a signal solely for one arm if the downstream readout were a simple

sum (see [11]). (2) Arm-dedicated units may dominate the population response, thereby repre-

senting the majority of population variance in dedicated sub-populations. In this case, the arm

is simply specified by which sub-population has become active. The latter possibility is investi-

gated over the following two sections. First, we consider whether modulation preferentially

occurs in units that are strongly dedicated to one arm or the other.

We performed a regression analysis to quantify the relationship between strength of arm

preference and modulation for the preferred arm. Importantly, arm preference and modula-

tion were calculated from independent datasets to prevent artificial linkage between the two

measures due to sampling noise. A slope of 1 corresponds to an order of magnitude increase

in modulation, on average, when comparing fully arm-neutral units with fully arm-dedicated

units. As seen in Fig 5A, the slopes are initially near zero and then become positive over time.

To quantify these changes, we used a multi-factorial permutation approach to test for effects of

Area (PMd, M1), Phase (Rest, Instruct, Move), and Preferred Arm (Ipsi, Contra) on the popu-

lation slopes.

We found a main effect of Phase in both animals (monkey O: p = 1.0e-4, monkey W:

p = 1.0e-4): a positive correlation between arm preference and modulation strength emerged

and strengthened across task phases (Fig 5A and 5B). By the Move phase, there was approxi-

mately a ten-fold increase in the modulation strength of units with an absolute arm preference

of 1 (completely dedicated) relative to units with an arm preference near 0 (balanced modula-

tion). Since PMd displayed greater modulation than M1 during preparation but not move-

ment, we tested whether the two areas had differing slopes in each phase independently. We

found a significant simple effect of Area during the Instruct phase (monkey O: p = 7.0e-4;

monkey W: p = 3.9e-3) but not the Move phase (monkey O: p = 0.20; monkey W: p = 0.90).

Thus, the relationship was more prominent within PMd prior to movement, while the two

areas became roughly equivalent following movement initiation. This was confirmed with a

test for 2x2 interaction (monkey O: p = 0.017; monkey W: p = 9.5e-3). Additionally, we ana-

lyzed the relationship between arm preference and modulation for the non-preferred arm to

confirm that increased arm preference is associated selectively with increased modulation for
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the preferred arm (S4 Fig). No significant positive relationships were observed in either mon-

key, either brain area, or any task phase; therefore, greater arm preference is associated with

selective increases in modulation for a single arm.

Given the overall contralateral bias, we further tested whether this relationship held for

both contra- and ipsi-preferring units. For the contra-preferring units, there was a significant

simple effect of Phase (monkey O: p = 1.0e-4; monkey W: p = 1.0e-4). For the ipsi-preferring

units, the Phase effect was significant for monkey O (p = 1.0e-4), but only trended in this direc-

tion for monkey W (p = 0.062). Slopes were generally steeper for contra-preferring units; how-

ever, the simple effect of Preferred Arm within each Phase was only significant for monkey W

(monkey O: pInstruct = 0.13, pMove = 0.93; monkey W: pInstruct = 2.0e-4, pMove = 1.0e-4). It is

important to note that monkey W had fewer units with a strong preference for the ipsilateral

arm, which makes it more difficult to assess the relationship between arm preference and mod-

ulation strength simply due to sampling. Since there are more contra-dedicated units than

ipsi-dedicated units for both animals, and those dedicated units tend to be more strongly mod-

ulated, these results collectively suggest that a larger proportion of the contralateral signal

Fig 5. Neural activity is progressively consolidated within arm-specific subpopulations. (A) Modulation for the

preferred arm plotted against arm preference, for all units in each brain area and task phase. Log-linear best fit lines are

displayed in red. Inset figures belong to Monkey W. (B) Slopes of regression lines fit to data from (A), independently

for ipsi- and contra-preferring sub-populations. Mean +/- bootstrapped 95% confidence interval. (C-E) For the Move

phase in monkey O, cumulative modulation plotted against arm preference, i.e. each point indicates the proportion of

modulation accounted for by all units with arm preference values to the left of the indexed position. Positive values on

the x-axis indicate contra-preferring, and negative values indicate ipsi-preferring. Shaded error bars indicate

bootstrapped standard error. See S2 Fig for cumulative modulation plots for both animals in each phase. (C) The full

spectrum of arm preferences is shown. Shaded backgrounds indicate three partitions: Contra-dedicated [0.4, 1] and

Ipsi-dedicated [-1, -0.4] in white, and Neutral [-0.3, 0.3] in grey. (D) Cumulative modulation within contra-dedicated

regime. (E) Same as (D), but ipsi-dedicated. Note inverted axis. (F) The proportion of modulation within each

partition from (C) during ipsi- or contralateral movements. Note that the total modulation is significantly lower for

ipsilateral movements, particularly for Monkey W, and these data are only displayed as proportions. Mean +/-

bootstrapped 95% confidence interval.

https://doi.org/10.1371/journal.pcbi.1009615.g005
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exists within dedicated sub-populations compared to the ipsilateral signal. We directly test this

conjecture in the following section where we consider population-level implications of these

results.

The population signal is largely confined to arm-specific sub-populations

The preceding analyses establish that there is an increase across task phases in the proportion

of units that are strongly dedicated to a single arm, and that those units exhibit greater modula-

tion in activity relative to those that are more neutral. This suggests that the population signal

is progressively segregating at the level of individual units. To visualize this segregation, we

ordered units based on arm preference and calculated the cumulative modulation at each

value, i.e. the proportion of modulation across the entire population that is accounted for by

units with arm preferences at or below a certain value (Fig 5C–5E). Since PMd and M1 showed

similar relationships in the previous analyses, we combined units from the two areas, analyzing

them as a collective population. In the extreme case that population signals are entirely segre-

gated, 100% of ipsilateral modulation would occur at an arm preference of -1, and 100% of

contralateral modulation would occur at +1.

We focused on two core questions. (1) Does the proportion of dedicated modulation

increase across task phases, indicating a progression towards independent signals? (2) Does

the amount of independent (or dedicated) modulation differ for ipsi- and contralateral activa-

tion? As expected, dedicated regimes of the arm preference distribution captured a large pro-

portion of the modulation associated with movements of one arm and only a small proportion

of the modulation associated with the other arm, primarily during execution (Fig 5C–5F). For

statistical testing, we split the arm preference domain into 3 equal width regimes, correspond-

ing to contra-dedicated (arm preference > 0.4), ipsi-dedicated (arm preference < -0.4), and

arm-neutral (-0.3< arm preference < 0.3) units, and summarized the data by expressing the

proportion of modulation contained within each regime (Fig 5F). We again used a multi-facto-

rial permutation approach to test for effects of Phase (Rest, Instruct, Move), and Arm (Ipsi,

Contra). We will refer to ipsilateral modulation in the ipsi-dedicated units simply as “ipsi-dedi-

cated modulation” and vice-versa for contra-.

For both animals, the effect of Phase was significant in the contralateral responses (monkey

O: p = 1.0e-4; monkey W: p = 1.0e-4), with the proportion of contra-dedicated modulation

increasing across phases (Fig 5F, red lines). Ipsi-dedicated modulation increased across task

phases for both monkeys as well (Fig 5F, blue lines), although this effect was only significant

for monkey O (monkey O: p = 1.8e-3; monkey W: p = 0.36). There was a significant interac-

tion between Arm and Phase for both monkeys (monkey O: p = 1.0e-4; monkey W: p = 1.0e-

4), indicating the stronger emergence of contra-dedicated modulation as compared to ipsi-

dedicated modulation. Both animals showed a simple effect of Hand during the Instruct phase

(monkey O: p = 1.0e-4; monkey W: p = 1.0e-4), with more contra-dedicated modulation being

observed than ipsi-. This effect was also significant during the Move phase for monkey W

(p = 1.0e-4) and approached significance for monkey O (p = 0.053).

These results suggest that arm signals separate at the level of individual units throughout

preparation. Moreover, contralateral signals are more independent than ipsilateral signals, in

the sense that a larger proportion of the contralateral modulation was represented in dedicated

regimes of the population. Since this characterization of the population response captures

most of the modulation for each arm in mutually exclusive sub-populations, we will refer to it

as the “dedicated” component.

We emphasize that the partitions used here were chosen to broadly isolate the extremes of

the distribution; it was not intended that the precise boundaries map onto discrete cell-types
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or any similar interpretations. However, we did consider in a post-hoc manner whether the

variation in arm preference might be related to some anatomical or physiological factor. To

this end, we asked whether units in these different arm preference regimes came from different

cortical layers by analyzing their relative depths along the recording probes. The average depth

of recorded units did vary across regimes (S3 Fig). Differences in mean depth were statistically

significant in M1 during the Move phase for both animals, PMd during the Instruct phase for

monkey O, and PMd during the Move phase for monkey W (permutation-based one-way

ANOVA–p<0.05). In most cases, this corresponded to the arm-neutral units being recorded

at deeper locations than dedicated units, either ipsi- or contra- (see S3 Fig for results of follow-

up pairwise tests).

It is possible that the limited range of movement directions used in the task may influence

the degree of dedicated modulation (the maximum angle between target vectors is 107˚). For

example, a unit that appears dedicated to one arm may only be unmodulated for the other arm

over the range of movement directions being tested. That unit may in fact be modulated dur-

ing different movements, which would cause it to appear neutral if sampled. As a post-hoc

control for this possibility, we included data during the return movements following target

acquisition, effectively doubling the range of sampled movement directions, and repeated the

analyses of Fig 5. The relationship between arm preference and modulation strength remained

when analyzing data that included both the reach and return portions of the trial (S5B and

S5C Fig). This relationship was significant for both monkeys, in both PMd and M1, and for

both ipsi- and contra-preferring units, with one exception (permutation test of regression

slopes–p<0.05; monkey W, PMd, Ipsi-preferring units p = 0.60). The proportion of dedicated

modulation was largely unchanged as well (S5D Fig), and replacing Move phase data with

Reach & Return did not impact significance of the Phase effect (Contra-dedicated modula-

tion–monkey O: p = 1e-4; monkey W: p = 1e-4; Ipsi-dedicated modulation–monkey O:

p = 6.5e-3; monkey W: p = 0.26). Therefore, the dedicated signals that we observe persist even

with a broad range of movement directions. Returning to the possibilities outlined at the

beginning of the previous section, we therefore conclude that this dedicated component pro-

gressively becomes the dominant characterization of the population response–dominant in

the sense that it represents the majority of modulation across the population.

Neural subspaces for the two arms diverge across task phases

We next sought to characterize the time course of changes in neural subspaces as movements

were prepared and executed. We hypothesized that dedicated activation would drive popula-

tion signals into diverging subspaces for the two arms. We identified these subspaces using

PCA on simultaneously recorded units (i.e., not trial-averaging activity and combining units

across sessions). For these analyses, we pooled units from the left and right hemispheres. We

first estimated the dimensionality of the neural subspace during each task phase using a cross-

validated data reconstruction method (see Methods; [29]). This is an essential step to avoid

drawing conclusions based on noise-dominated dimensions. Dimensionality was calculated

separately for each session, arm, and task phase. The dimensionality estimates ranged from

approximately 3–5 across the task phases (Fig 6A), values comparable to those reported in pre-

vious studies using similar methods [29]. We chose to focus on only four components to repre-

sent the neural subspaces of each dataset.

We calculated the alignment between PCA subspaces associated with left or right arm

movements using a metric that describes the proportion of low-dimensional variance for one

dataset that is captured in the low-dimensional space of another (see Methods; [30]). If the net-

work is organizing activity in the same way across datasets, then the covariance alignment is 1,
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regardless of signal magnitude. If activity is reorganized into orthogonal subspaces across data-

sets, then the covariance alignment is 0. Two types of alignment measurements were made: (1)

Subspaces were fit to random partitions of trials for the same arm–what we will refer to as

“native” alignment–giving us an estimate of natural variability in our subspace estimates when

compared over the same time window, and describing the evolution of the motor plan when

comparing across time windows. (2) Subspaces were fit separately using trials for either arm

and compared with each other–what we will refer to as “cross” alignment–describing the

divergence of the subspaces for the two arms at each task phase.

Using single-trial activity event-locked to the onset of instruction and movement, we were

able to capture the fine-timescale evolution of any emerging or diverging subspaces (Fig 6B

and 6C). When comparing the native alignment across task phases, we observed the emer-

gence of distinct Instruct and Move period subspaces. Fig 6B shows these data displayed as a

continuous heat map with block diagonal structure that coincides with the phase transitions.

Within each phase native alignment was high, indicating consistent low-dimensional structure

in the population activity that was specific to each stage (Fig 6B; Fig 6D filled circles).

As expected, subspaces for the two arms gradually diverged across task phases (Fig 6C; Fig

6D open circles). On the whole, subspaces for the two arms were significantly less aligned than

the (cross-validated) comparisons within the same arm (Fig 6D open vs filled circles; two-way

Fig 6. Population activity reorganizes and diverges for the two limbs throughout planning. (A) Dimensionality of

the PCA subspace estimated as the number of components that minimizes the cross-validated reconstruction error of

the full-dimensional neural data. Mean +/- standard error across datasets. (B,C) Heat maps indicate alignment of

4-dimensional PCA subspaces between all pairs of timepoints across the Instruct and Move phases of the task,

averaged across sessions. (B) Compares subspaces across time for movements of the same arm. Three blocks forming

along the diagonal indicate three distinct subspaces: a pre-instruction Rest space, a post-instruction Instruct space, and

a peri-movement Move space. (C) Compares subspaces across time for movements of opposite arms. Prior to

instruction there is a moderate alignment of the subspaces for each limb, however, the two subspaces diverge around

100ms post instruction. (D) Summary of the data in (B,C). Mean +/- standard deviation across datasets.

https://doi.org/10.1371/journal.pcbi.1009615.g006
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ANOVA, ME comparison type–monkey O: p = 4.0e-68; monkey W: p = 4.2e-32). Interest-

ingly, subspace divergence was already apparent during the Rest phase (paired sample t-test,

native-Rest vs cross-Rest–monkey O: p = 6.7e-12; monkey W: p = 6.5e-7). As mentioned in

our analysis of single-unit arm preferences, this is likely due to predictable arm assignments

from the blocked task structure (Figs 1C and S1). Cross alignment decreased significantly as

the trial unfolded, reaching a minimum during movement (one-way repeated measures

ANOVA–monkey O: p = 6.2e-8; monkey W: p = 9.5e-8). These results map closely onto the

progressive segregation of dedicated signals described in the previous section.

Subspace separation relies upon dedicated signals

Activity within mutually exclusive sub-populations naturally separates into distinct linear sub-

spaces; as such, we can expect some level of subspace separation as a simple result of dedicated

variance. However, it is possible that subspace separation could occur within a distributed

representation as well [10,11]. This question is especially important in considering units that

show relatively balanced modulation for the two arms. Even though these units show similar

levels of activity during contra- and ipsilateral movement, it is possible that their population-

level contributions are different for each, and thus also contribute to subspace separation.

To investigate the extent to which subspace separation relied upon dedicated activation, we

analyzed the structure of PCA subspaces via their coefficient weights. Since components of

PCA models form an orthogonal basis set, each can be independently analyzed to determine

its contribution to subspace divergence. We fit separate PCA models for each arm and task

phase and calculated two statistics for each component: (1) To capture the contribution of a

given component to subspace separation, we calculated the ratio of variance it captured for the

two arms (right/left). (2) To capture the dependence of a given component on arm-dedicated

units, we calculated a coefficient-weighted average of the arm preferences for all units (e.g., if

non-zero weights were only given to right arm dedicated units, this value would be 1; if weights

were evenly distributed across the spectrum of arm-preferences, this value would be 0). A

strong relationship between these two metrics would suggest that subspace separation relies

upon dedicated activation.

Indeed, this was the case during both the Instruct and Move phases. Fig 7A–7C shows a sin-

gle session example from the Move phase. The top principle components captured a large

amount of the variance for the left arm while capturing little variance for the right arm. Com-

ponents with a variance ratio strongly favoring the left arm almost exclusively weighted units

that were themselves highly dedicated to the left arm. The lower components with more bal-

anced variance ratios distributed weights more evenly across the arm preference spectrum.

This pattern was evident in each phase throughout recordings from both monkeys. Fig 7D

shows the relationship between right/left variance ratio and coefficient-weighted arm prefer-

ence for the top five principal components of each dataset. Following the instruction cue, com-

ponents that strongly discriminated between the two limbs (variance ratio far from 1)

primarily weighted units that were themselves highly discriminating. This relationship

remained strong as the range expanded during the Move phase. The analysis was also repeated

using an alternative normalization method to mitigate the effect of highly modulated units. As

expected, mitigating the effect of highly modulated units decreased the magnitude of subspace

separation while maintaining the relationship between coefficient-weighted arm preference

and variance ratio over the reduced range (S6A Fig). This further illustrates the dependence

upon highly arm-dedicated, highly modulated units. In summary, these results suggest that the

subspace separation described in the previous section relies upon signals that segregate at the

level of individual units.
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An additional distributed signal contains target-specific information about

both arms

The preceding sections make clear that the population signal is dominated by a segregated

organization. Nonetheless, it is likely that variance associated with the non-preferred arm of

each unit also reflects a meaningful population component, albeit one that is much weaker in

magnitude. Indeed, many of the units that we recorded in both PMd and M1 were significantly

modulated for both arms throughout preparation and movement (S1 Table). To assess the

information content and strength of these secondary responses, we divided the entire popula-

tion of units from both hemispheres and brain areas into two subgroups based on the pre-

ferred arm of each unit from a held-out dataset (Fig 8A). If the signals were entirely dedicated

to one arm or the other, each subgroup would only contain information about its preferred

arm (e.g., a left arm-preferring subgroup would be predictive of left but not right arm

Fig 7. Separation of arm-specific subspaces relies upon unit-level segregation. (A-C) Single session example of a

PCA model trained to capture bi-hemispheric activity during left arm movements. Held-out testing data for 82

simultaneously recorded units were used. (A) Cumulative proportion of variance accounted for across the top 10

principal components. (B) For each component, the ratio of the explained variance between the two limbs. (C) For

each component circled in red in 7B, the absolute values of the coefficient weights are plotted against the

corresponding unit’s arm preference. Top row represents components 1–3; bottom row represents components 4–6.

Positive arm preference values indicate right arm preferring units. (D) The component variance ratio for the two arms

plotted against a coefficient-weighted average of the arm preferences for each unit in that component. Datapoints

represent the top 5 principal components of left or right arm trained models across all sessions. Separate models for

each phase are plotted in each column. Because these models include activity from both hemispheres, hands are

referred to as “left” and “right” as opposed to “ipsi” and “contra”. Pearson correlation coefficient for each dataset is

displayed in the red box. Top row monkey O, bottom row monkey W.

https://doi.org/10.1371/journal.pcbi.1009615.g007
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movements). If instead there is meaningful activation that is distributed across the same units,

then each subgroup would contain both dedicated and distributed information about its pre-

ferred arm, but only distributed information about its non-preferred arm.

We first analyzed the time course of modulation for each subgroup during movements of

the preferred and non-preferred arms. While modulation during preferred-arm trials was

much stronger in the Instruct and Move phases, there was a small amount of modulation dur-

ing trials of the non-preferred arm as well (Fig 8B). Given the strong directional tuning found

in motor cortex neurons (for example, [31]), we assume that modulation associated with the

preferred arm carries rich target-specific information. However, it is less clear if activity related

to the non-preferred arm carries similar information. To determine whether this modulation

carried target-specific information about the behavior, rather than non-specific changes

related to task engagement or small movements of the non-selected arm, we trained linear dis-

criminant analysis (LDA) classifiers to predict the target on each trial. Even though the units

showed very little modulation when the non-preferred limb was used, prediction accuracy was

well above chance (Fig 8C–8E, paired sample t-test with Rest–monkey O: Instruct p = 1.5e-12,

Move p = 4.1e-21; monkey W: Instruct p = 1.8e-3, Move p = 1.1e-7). This suggests that the

population code is not entirely dedicated but contains a meaningful distributed component as

Fig 8. Behaviorally specific information exists within a subspace that captures bilateral activity. (A) Illustration of

the population partitioning approach. Each unit is represented as a pie-chart displaying the relative modulation during

left and right arm trials. Most units in the left hemisphere are more strongly modulated during right arm movements

(mostly purple pie-charts), yet some prefer left arm movements (mostly yellow pie-charts). Regardless as to which

hemisphere each unit is in, the population may be subdivided into left and right arm preferring sub-populations. On

the extreme that all information about each arm is contained within dedicated sub-populations, this simple division

will fully segregate the signals such that movements of the non-preferred arm cannot be classified. (B) Modulation as a

function of time, taken as the mean over all units during trials of their preferred or non-preferred arm, +/- standard

error. Horizontal bars at the top indicate the phase windows used in analysis. (C) Target classification accuracy using

LDA for movements of the preferred arm. Models are trained on each time point and tested on each time point to

provide high temporal resolution and inform cross-phase generalization of the classifier. Plots are averaged over all

sessions (13 Monkey O, large plots, 7 Monkey W, small plots) and both sub-populations (left-preferring, right-

preferring). (D) Same as (C), but for non-preferred arm movements. (E) Summary data of (C,D) for monkey O, top

panel, and monkey W, bottom panel. Mean +/- standard deviation across datasets. (F) Ratio of the variance captured

in the distributed subspace for the two limbs.

https://doi.org/10.1371/journal.pcbi.1009615.g008
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well. We refer to this as “distributed” in the sense that the contributing units carry information

about both arms.

The distributed signal is contained in a shared subspace for the two arms

We next asked whether subspace separation exists specifically within the distributed portion of

population activity. To isolate distributed signals, we again partitioned the population based

on preferred arm and fit 4-D PCA models to neural activity during only trials of the non-pre-

ferred arm. This is a conservative approach for fitting only the distributed activity, since dedi-

cated activity will be absent during reaches of the non-preferred arm. This approach can also

be interpreted as directly isolating the effect of covariance differences by removing the effect of

magnitude differences. We will refer to the subspace spanned by these models as the “distrib-

uted” subspace.

If population activity for each arm separates along orthogonal neural dimensions, even in

the absence of dedicated variance, then the distributed subspace would preferentially capture

variance for the non-preferred arm, since that is what it was fit with. Despite having greater

magnitude in the ambient space, preferred arm activity would exist largely in the null space of

this projection and none of its variance would exist in the distributed subspace. Alternatively,

if signals for the non-preferred arm exist within a shared subspace for the two arms, then the

patterns of activity for either arm would be preserved through the projection, and we would

expect as much or more variance captured for the preferred arm.

Across all task phases and for both animals, more variance was observed in the distributed

subspace during preferred arm trials than during non-preferred arm trials (Wilcoxon signed

rank–p<0.05 for all six comparisons). The ratios of variance captured for each arm were

expressed as non-preferred over preferred and were computed using the raw variance, not the

proportion of total variance. Variance ratios were below 1 for nearly every individual dataset

and became even lower with each subsequent phase (Fig 8F). Additionally, mean coefficient

weights were not significantly different across PMd and M1 for the Instruct phase, but were

slightly larger for M1 during the Move phase in both monkeys (permutation test–p>0.05 for

monkeys O and W Instruct phase; monkey O Move phase p = 1.0e-4, �jwM1j ¼ 0:12; �jwPMdj ¼

0:096; monkey W Move phase p ¼ 0:027; �jwM1j ¼ 0:11; �jwPMdj ¼ 0:096). This indicates

that the two areas were similarly contributing to the effect. Visualizations of the data projected

onto the top components in both the dedicated and distributed subspaces provide additional

perspective on the temporal evolution of these features, including the relative magnitudes of

the signals for each hand and target-specificity (S7 Fig). Together these results suggest that

across the entire process of preparation and execution of movements, arm signals that are

mixed at the level of individual units occupy a shared subspace and are not differentiated

through linear population readouts. We again used an alternative firing rate normalization

method to confirm that this result was not dependent on overrepresentation of units with the

strongest modulation, and the same results were observed (S6B Fig). In summary, the subspace

capturing distributed activity is not unique to the arm it was fit to, but rather represents a

shared subspace for population activity associated with either arm.

Discussion

We have shown that the combined population response spanning PMd and M1 across hemi-

spheres contains two primary components with regards to the lateralized control of arm move-

ments in non-human primates.

The first is characterized by signals that are segregated at the level of individual units, which

we call the “dedicated” component. Activity that emerged following the instructional cue was
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most prominent in PMd and showed a tendency for stronger modulation in units with greater

arm preference. This caused the signals for each arm to begin segregating into mutually exclu-

sive sub-populations and occupy divergent low-dimensional subspaces. During the transition

to movement, M1 became strongly engaged and segregation of arm signals became even more

pronounced.

The second component leveraged signals that were mixed within units, which we call the

“distributed” component. By splitting the population in two based on each unit’s preferred

arm and analyzing the responses during non-preferred arm trials, we showed that signals for

each arm were not completely segregated. Despite being very small in magnitude, these signals

contained target-specific information. In contrast to the natural separability of the dedicated

component, however, subspaces fit to this activity captured at least as much variance for the

other arm during each phase of the task, suggesting a shared subspace for the two arms that

persists across preparation and movement.

Comparison to previous studies of bilateral arm signals in the motor cortex

Our study adds to a growing body of existing work reporting activity related to both arms in

the same motor cortical units during either preparation [6,8,12] or movement [5,7,8,10–

12,32]. Two recent studies have addressed the puzzling presence of bilateral activity in M1 dur-

ing unimanual behavior [10,11]. Despite many units being active for either arm (similar to our

own observations in Fig 4B and S1 Table), both studies reported separation of population-level

arm signals into distinct neural subspaces. Furthermore, they attributed this separation to

covariance changes between the two modes that would cause even signals that are mixed

within units to contribute to the effect. In the present study, we build upon these observations

and reveal an underlying organizational structure that suggests arm signals are not as mixed

within units as they would appear based on distributions of single-unit arm preferences. We

show that dedicated signals contribute more to the overall population variance and solely

account for the presence of arm-specific subspaces. Signals that are mixed within units reflect

a different feature of the population. Our example in Fig 5C–5E demonstrates that segregation

of arm signals into distinct neural subspaces likely arises from activation of exclusive sub-pop-

ulations–similar to the top principal components from [10,11] (as well as those in our Fig 7A

and 7B example), dedicated regimes of the population in our study captured large amounts of

variance for one arm while capturing very little for the other. Analysis of model structure con-

firmed that dedicated variance drove PCA results (Figs 7, 8 and S7). Furthermore, we mapped

the development of this signal feature across preparation and movement, showing that it

begins to emerge even during preparation (Figs 5, 6 and S7) and involves both PMd and M1

(Fig 5).

Not only does this clarify the mechanism of signal separation in motor cortical activity, but

it acknowledges a critical heterogeneity in the population response. Dedicated signals repre-

sent most, but not all, of the population variance. Signals that are mixed within units (distrib-

uted signals) reveal a portion of the population activity that is not independent for the two

arms. Effector-independent coding has long been appreciated in PMd [8,12]. Recently, Willet

et al. [33] identified separate “limb-coding” and “movement-coding” dimensions in neural

activity from the hand knob area of human premotor cortex. The “movement-coding” compo-

nent represented movements for different effectors in the same fashion. This bears similarity

to our “distributed” component, although we only show that activity for each arm resides in

the same space, not that its relationship to behavior is invariant. Notably, PMd units were not

more heavily weighted in our distributed models. This suggests that even in M1, signals for the

two arms are not fully independent.
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Interpretation from a whole-body control perspective

A holistic interpretation of the current results requires considering that the arm is part of a

highly coupled biomechanical plant that encompasses the whole body. Under normal reaching

conditions, postural muscles not only act to support arm movement, but also serve to stabilize

the trunk under reactive forces that arise from the moving limb [34–36]. For the behavior in

our study, one would expect that the muscles most directly involved in moving the arm would

display the greatest activity changes, namely the muscles of the shoulder girdle, triceps, and

biceps. The dedicated component we observed, constituting the majority of the population sig-

nal, had a similarly direct and exclusive relationship to the moving arm. In contrast, the dis-

tributed component that was characterized by negligible arm-specificity may reflect activity

related to more axial musculature associated with posture stabilization during movements of

either arm. While we have not recorded EMG activity, the micromovements observed in the

non-performing arm (Fig 1E) could reflect forces transmitted across the body. Our results

may therefore reflect heterogenous features displayed across all muscles involved in reaching

movements, both directly and indirectly, while maintaining a bias towards the arm muscles

most directly involved in moving a single arm. Despite recording in regions of the motor cor-

tex that are nominally arm-related, it is plausible that activity related to postural stability via

axial musculature is also present in our recordings. The idea that whole-body information is

present within nominal arm areas of the cortex has been highlighted by [33].

While the absence of EMG data in the current study limits our ability to directly examine

postural-related activity, such recordings have been made in similar contexts (although most

of these have been limited to a constrained 2-D workspace, and recordings from trunk muscles

have been uncommon). EMG recordings from shoulder and arm muscles in the non-perform-

ing arm typically show little or no activity [9–11]. Cisek et al. [8] examined some of the axial

musculature during bilateral arm movements while obtaining cortical recordings in the pri-

mary and dorsal premotor cortices. The authors found several muscles that displayed activity

tuned to the direction of movements for either arm, primarily in the more proximal and axial

musculature. If the distributed component identified in the current study is related to axial

musculature, this could explain the ability to classify movements of the non-preferred arm

(Fig 8D). Notably, Cisek et al. rejected the hypothesis that bilateral instructed delay period

activity in PMd was devoted to axial musculature, since it featured effector-independent prop-

erties that were not observed in the majority of muscles. However, their reports did not pre-

clude the possibility that activity in M1 or PMd during ipsilateral arm movements may be

related to coupled activation of postural muscles in the contralateral body (see also [32]).

A related hypothesis is that the arm-independent distributed component may reflect reflex

modulation in anticipation of the postural adjustments that arise during arm movements. Pre-

movement modulation of spinal reflex components has been widely reported, including H-

reflexes [37,38], spinal interneurons [39], and even muscle spindles [40] (but see [41]). This

hypothesis could explain the presence of distributed activity during the instructed delay period

in the present study (Figs 8 and S7) when EMG should be minimal or entirely absent. A likely

anatomical substrate for anticipatory reflex modulation is the cortico-reticulospinal pathway

given its bilateral projections that have been strongly implicated in postural control [1,42,43]

and bilateral coordination of arm movements [44]. Through its connections with alpha and

gamma motor neurons it may either directly influence muscle activation or alter musculoskel-

etal dynamics by modulating reflex gain [45], all in the service of coordinating bilateral axial

control with the distal effectors that enable reaching.

While we have dichotomized the dedicated and distributed components of population

activity in the motor cortex for analytic purposes, this activity may represent a more fluid
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continuum of arm preference that is reflective of the muscles they are involved in controlling.

However, although providing postural control is likely a major role of bilateral cortical activity,

three points suggest that it serves additional functions. First, ipsilateral activity has been

observed, to a lesser extent, during isolated hand and finger movements [12–14]. Such move-

ments are less likely to entail forces that would require postural adjustments involving the con-

tralateral side of the body. Second, postural effects should be most relevant during the Move

phase, yet we observe this distributed activity even during the instructed delay. While EMG

activity in axial muscles has been reported during the instructed delay period of reaching

tasks, that activity is qualitatively different from concurrent neural activity, at least in PMd [8].

Nonetheless, the instructed-delay activity could be related to anticipatory reflex adjustments.

Third, we observe a small amount of exclusively ipsilateral neural activity (Figs 3A and 5). This

activity seems unlikely to be postural given the absence of evidence for unique muscle patterns

on the non-performing side of the body during similar reaching tasks [8].

Progressive segregation of arm-dedicated signals and its functional

significance

To our knowledge, this study is the first to compare low-dimensional population structure

during preparation of left vs right arm reaching in neurologically-intact subjects (see [33] for

preparation of attempted movements in a human participant with C4 spinal cord injury). It

has been proposed that neural subspaces reorganize between preparation and execution of

reaching movements [22], which we observe in our own data (Fig 6B). A principle interest of

this study was to determine how the emergence of arm-specific signals maps onto this reorga-

nization process. Since previous work has shown that the transition from preparation to move-

ment coincides with an increased proportion of lateralized units [8,17,18], we expected activity

to progressively segregate at the level of individual units, represented primarily in the contra-

lateral hemispheres, as the population reorganizes between task phases. This was indeed the

case, and began even during the instruction phase (Fig 5). Careful inspection of model struc-

ture revealed that segregation of arm signals at the individual unit level drove separation of

arm-specific neural subspaces gradually throughout the trial (Figs 6C, 6D and 7). This segrega-

tion reached its maximum during movement, suggesting that it was relatively unaffected by

the small movements observed during the Move phase (Fig 1).

Importantly, contralateral signals were more independent than ipsilateral ones; a larger

proportion of contralateral modulation occurred in contra-dedicated units than the reverse

case for ipsi- (Fig 5). This was not a surprising result, as contralateral bias in the functional

organization of motor cortex has been clearly revealed by effects stroke [46], lesion studies [2],

and cortical stimulation [47–49]. One candidate hypothesis for the presence of ipsilateral activ-

ity is that it supplies an independent control signal. There is some evidence that ipsilateral cor-

tex plays an increased role in movement following hemispheric damage [2,50–52], though not

necessarily a beneficial or compensatory one. The magnitude of ipsilateral encoding increases

with the degree of movement complexity [13] and may involve spatially distinct neural popula-

tions [53,54]. However, the corticospinal tract (CST) is almost entirely contralateral, and the

effectiveness of the ipsilateral component has been debated [3,55–57]. Ipsilateral cortex may

also exert its influence via connections made in the reticular formation, one source of descend-

ing bilateral input to the spinal cord [48,52,53,57]. Our results showed a small amount of inde-

pendent ipsilateral activity (monkey O more so than monkey W), with more of the ipsilateral

signal coming from non-dedicated units (Fig 5). Thus, if the ipsilateral hemisphere provides

any independent control signal, it is much weaker than the contralateral signal. Rather, our

results suggest that ipsilateral signals are involved in some form of bilateral control.
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Bilateral signals and their role in motor control

Correlated cortical activity for movements of the two arms has been widely reported in the lit-

erature, primarily using macro-scale neurophysiological approaches. Increases in excitability

of homologous effectors during transcranial magnetic stimulation (TMS) [58] and symmetric

activation patterns in functional magnetic resonance imaging (fMRI) [14,59] suggest that bilat-

eral motor cortical circuits are organized with mirrored properties. Similar correlated struc-

ture has also been reported in human ECoG [60] and premotor spiking activity [33]. Effector-

independent activity (correlated in an extrinsic reference frame) has also been observed during

movement preparation in PMd [8]. Mirror activation and other forms of interhemispheric

communication have been proposed to support intermanual skill transfer [14] or shaping of

contralateral activity patterns during complex behavior [13]. However, correlations between

the tuning for ipsilateral and contralateral arm movements in M1 units tend to be weak or

absent [7,8,11]. In the present study we have not directly compared directional tuning, yet we

did observe that the distributed component of bilateral signals existed within a shared subspace

for the two arms (Figs 8 and S7). Mirror activity would necessarily reside in the same neural

subspace for each arm, provided that the subspace is linear, given that linear subspaces are

invariant with respect to reflection. Our results are therefore consistent with functional

hypotheses of ipsilateral cortex involving mirror symmetric activation, and more generally for

hypotheses that predict linear correlations between activation patterns for the two arms. We

note, however, that while consistent linear correlations in the tuning properties of individual

neurons would deterministically result in shared neural subspaces, a lack of linear correlation

does not mean that neural subspaces will be orthogonal.

The distributed component that we have characterized may also play a role in bimanual

coordination. Distinct bimanual activity patterns have been observed in caudal premotor

regions using human fMRI [14] and in M1 using single-unit recordings in monkeys [5,7]. Sur-

gical transection of the corpus callosum, the primary direct connection between hemispheres

[61], disrupts typical spatial coupling and continuous synchronization of arm movements as

well [62,63], suggesting a cortical locus for these forms of bilateral control. These studies suggest

that bilaterally distributed networks involving PMd/M1 may facilitate bimanual coordination, a

function historically attributed to the supplementary motor area [64]. Our task involved unim-

anual movements, containing no component of coordination. However, the result that target-

specific information existed within a shared subspace (Fig 8) is consistent with a role in coordi-

nation. We make limited claims on this hypothesis due to our simplified behavior, and stress

that implicating a role in bimanual coordination does not simply mean revealing a shared sub-

strate for signals of both limbs. Nonetheless, a bi-hemispheric network structure may underly

computations for controlling the two arms as a unified plant [65]. M1 has been implicated in

multi-joint integration for voluntary movement and feedback control [66,67]. Bimanual behav-

iors have a similar task of overcoming redundant degrees of freedom [68]; many patterns of

behavior for each arm independently may help one achieve an action goal so long as coopera-

tion of the two remains intact (“motor equivalence” [69]). This lower-dimensional behavioral

coordination space, sometimes called “the uncontrolled manifold” [70], would likely have a

similar neural manifold in which bilateral arm signals interact (for related discussion and

review, see [71–73]). The distributed space that we report may reflect such a manifold.

Interpretation from a dynamical systems perspective

One unified explanation for the two components identified in this study is that they represent

the computational (or “hidden”) layers and the output layer of cortical processing. In this

framework, the distributed signal would reflect a bilateral network that plays a supportive role
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in motor processing rather than direct output. The idea that bilaterally distributed networks

contribute to computations that do not directly represent the output has been previously pro-

posed [10]. Preparatory activity in motor areas reflects abstract features of action and may lack

a strong contralateral bias [6,8]. The distinctive lack of laterality in the distributed signal we

observed is consistent with other reports of abstract preparatory responses. It played a rela-

tively stronger role during preparation as well, since the dedicated component did not fully

develop until movement. This aligns with reports that behaviorally specific features become

more apparent in motor cortical signals during active behavior, including laterality [8,16].

From a dynamical systems perspective, distributed signals could serve to enforce internal

dynamics of the overall population. Preparatory signals in pre- and primary motor cortex are

thought to converge on an ideal population state, or initial condition, such that internal circuit

dynamics will guide appropriate patterns of activity for the upcoming movement [24,26,27,74].

Rodent studies have shown that preparatory activity in motor cortical neurons projecting to other

cortical areas lacks strong laterality, while neurons with descending output exhibit pronounced

contralateral bias and became active closer to movement onset ([17] left vs right directional licking

task; [18] left vs right arm pedal pressing task). Furthermore, these bilaterally distributed networks

provide robustness to unilateral perturbation during preparation, and it has been hypothesized

that the two hemispheres operate together to maintain the network state ([26,27] left vs right

directional licking task). The two components that we have identified generally align with this

form of network structure. In addition to setting the initial state, persistence of the distributed

component during movement may reflect the ongoing dynamics of pattern generation [24,25].

Within this interpretation, progressive segregation of arm signals may reflect the emergence

of descending output that mirrors the well-established laterality of anatomical pathways [2,3].

However, descending cortical projections originate primarily in layer V of the cortex, while

cells in more superficial layers II and III primarily provide local and interhemispheric connec-

tions [75]. We did not observe a bias for arm-dedicated units to be located at deeper recording

locations; in fact, the trend was in the opposite direction (S3 Fig). Alternatively, the dedicated

component may contain a timing signal for triggering action or transitioning the network

from preparation to movement [25,76] while simultaneously specifying the selected effector.

Signals that reflect the timing of movements, but not their direction, have been shown to cap-

ture the most variance in PMd/M1 population responses [76]. Premotor activity has also been

shown to contain “limb-coding” dimensions that specify a movement effector independently

of the movement type [33]. The large dedicated signals that we observe bear similarity to both

of these previously identified response features, as they capture the majority of population vari-

ance and clearly distinguish the chosen effector (however, they also contain information

regarding the movement direction). It is plausible that all three reflect the same underlying

computational process of effector selection and movement initiation, with each emphasizing a

different aspect of the process as a result of the way they were analyzed.

In summary, we present a statistical description of arm signals spanning M1 and PMd

throughout reach preparation, characterizing in detail both lateralized and non-lateralized features

of the population response. The two components that we have identified will be crucial for contex-

tualizing current theory on bilateral motor cortical processing as well as designing future experi-

ments that investigate the independence and interaction of signals across the hemispheres.

Methods

Ethics statement

All procedures were conducted in compliance with the National Institutes of Health Guide for

the Care and Use of Laboratory Animals and were approved by the University of California at
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Berkeley Institutional Animal Care and Use Committee under protocol ID AUP-2014-09-

6720-1.

Behavioral recordings and task

Kinematic data were collected using LED-based motion tracking of several points along each

arm (Phasespace Inc, San Leandro, CA). 3D positions of each LED were sampled at 240Hz.

Prior to offline analysis, these positions were smoothed using a cubic spline and smoothing

parameter 0.005 (cspaps function–MATLAB). The most distal LED, located on the back side of

each hand just below the wrist, was used for online endpoint feedback and all offline analysis.

Monkeys were trained to perform a variant of an instructed-delay reaching task (Fig 1B).

Endpoint feedback of each arm and all visual stimuli were presented to the animal using a cus-

tom-built virtual reality 3D display. This display consisted of two mirrors that projected shifted

images independently to each eye to produce stereopsis. Cursors, indicating effector endpoint

position, were color coded for the left (yellow) and right (purple) hands, as were all associated

stimuli.

Each trial began with the appearance of the start positions for each hand (spherical targets,

radius 4cm), located near the body on top of a physical bar that the monkey rested its hands

on (Fig 1A). The horizontal positioning of the start targets along the bar fit one of three config-

urations: both targets 4cm from the body midline, or either hand located 15cm from the mid-

line with the other 4cm from the midline (i.e., both hands centered or one hand eccentric). In

a self-initiated manner, the monkey would assume the start position by placing both cursors in

their appropriate start targets and maintaining that position for 500 ms (“Rest” phase). Behav-

ioral analysis (Fig 1D and 1E) was performed only on trials where the non-reaching hand was

held in the eccentric position.

Our threshold for detecting movement online was 9cm/s; breaking this threshold with

either hand during the Rest phase would abort the trial. Marking the beginning of the

“Instruct” phase, a cue (spherical target, radius 3cm) would appear at one of six locations

within a fronto-parallel plane 8cm in front of the start positions (Fig 1A). For starting

configurations in which the non-reaching hand was held in the center position, the lower tar-

get on the side of the non-reaching hand was excluded to prevent the reaching hand from

coming into close proximity with the non-reaching hand. The color of the cue indicated the

required arm, and position of the cue was the target location for the forthcoming reach. The

instruction cue remained visible through the delay period, a duration that was sampled uni-

formly on the interval 500-1500ms. Movement beyond the speed threshold with either hand

would abort the trial.

At the end of this period, two simultaneous changes signaled the monkey to move and

marked the start of the “Move” phase. First, the sphere defining the start position for the cued

arm disappeared. Second, the cue at the target location enlarged (3cm to 4cm radius). The

monkey then reached toward the target and once at the terminal location, had to maintain that

position for 250ms. To earn a juice reward, the animal had to initiate the reach within 500ms

of the onset of the imperative, terminate the movement within the target’s circumference, and

keep the non-reaching hand stationary for the duration of the trial. To further emphasize that

the trial was successful, the target turned green.

300ms windows were used to represent each phase in data analysis. For the Rest phase, we

used the final 300ms before the onset of the instruction cue. For the Instruct phase, we used

data in the interval between 200ms to 500ms post-cue. For the Move phase, we used the first

300ms following the onset of movement, defined as when speed of the reaching hand exceeded

10cm/s. We used a late window for the Rest phase to avoid any residual activity associated

PLOS COMPUTATIONAL BIOLOGY Separation and interaction of bilateral arm signals in PMd/M1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009615 November 22, 2021 22 / 35

https://doi.org/10.1371/journal.pcbi.1009615


with moving to the start positions. The steady state neural response was used to position the

Instruct phase window; this was reached approximately 200ms after the onset of the instruc-

tion cue (see Fig 7B). The Move window was selected to capture peak neural activity associated

with movement while including only the feed-forward portion, which typically lasted 250-

300ms (Fig 1C, bottom row). Reach durations were calculated as the time between movement

onset and the first point where (1) movement speed dropped below 20cm/s, and (2) velocity in

the depth direction reached 0.

Surgical implantation

Two adult male rhesus monkeys (Macaca mulatta) were implanted bilaterally with custom

acute recording chambers (Grey Matter Research LLC, Bozeman, MT). Partial craniotomies

within the chambers allowed access to the arm regions of dorsal premotor (PMd) and primary

motor (M1) cortices in both hemispheres. Localization of target areas was performed using ste-

reotactically aligned structural MRI collected just prior to implantation, alongside a neuroana-

tomical atlas of the rhesus brain [28].

Electrophysiology

Unit activity was collected using 24–32 channel multi-site probes (V-probe—Plexon Inc, Dal-

las, TX), with 15um diameter electrode contacts separated by 100um and positioned axially

along a single shank. Probes were lowered deep enough to cover roughly the full laminar struc-

ture of cortex (Fig 2B and 2C). The depth of insertion was determined by (1) measurements of

the dural surface prior to recording, and (2) presence of spiking activity across all channels. 2

probes were typically inserted in each hemisphere daily and removed at the end of the session,

one in PMd and one in M1. A total of 12 insertion points across PMd and M1 of each hemi-

sphere were used across 13 recording sessions in Monkey O, and 6 insertion points across 7

sessions for Monkey W (Fig 2A).

Neural data were recorded using the OmniPlex Neural Recording Data Acquisition System

(Plexon Inc, Dallas, TX). Spike sorting was performed offline (Offline Sorter–Plexon Inc, Dal-

las, TX). Single-unit waveforms were isolated in multi-dimensional feature space (including

principal components, non-linear energy, waveform amplitudes) and rejected if either (1) the

waveform clusters were not stable over the course of the session, (2) >0.4% of inter-spike-

intervals were below 1ms, or (3) they were clearly repeats of a unit identified on an adjacent

channel as determined visually by coincident spiking. To fully ensure that units were not dou-

ble logged, we eliminated one member of any pair of units that had a firing rate correlation

above 0.9 and were within two channels of each other. For population level analyses (PCA,

LDA), a small number of multi-units were included. A multi-unit was defined by waveform

clusters that separated from the noise cluster and were stable over time, but did not quite meet

the inter-spike-interval criteria or contained what might be multiple unit clusters that could

not be easily separated. For monkey O, the average proportion of multi-units in each single

session population sample was 17%, ranging 12–25%. For monkey W, average 20%, ranging

12–32%.

Spiking data were binned in 20ms non-overlapping bins, square-root transformed to stabi-

lize variance, and smoothed with a 50ms gaussian kernel for all analyses [29]. This provided an

effective sampling rate of 50Hz, with each sample time aligned to the center of its associated

bin. The window edges were included in all analysis windows (e.g. 300ms windows included

16 samples). Both neural and behavioral data were deposited in the Dryad repository: https://

doi.org/10.6078/D1FM6S [77].
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Modulation and arm preference metrics

As a time-varying value, modulation was calculated as:

Mt ¼
xt � mRest

sRest þ 1

� �2

¼ zt
2; ð1Þ

where

xt : instantaneous firing rate at time t

mRest : mean firing rate during Rest

sRest : standard deviation during Rest

This unitless metric reflects the deviation from baseline activity, normalized by baseline

fluctuations. The constant 1 was added to the denominator for soft-normalization to ensure

that units which were silent during rest did not have exploding values and were not overly

emphasized in the dataset. Because some units had slightly different activity on left and right

arm trials even before instruction, the standard deviation during Rest was calculated separately

for each arm and σrest was calculated as the mean of the two.

Single values of modulation representing each phase were obtained using the same 300ms

phase windows that were used in behavioral analysis (see Methods –Behavioral recordings and

task). Phase-specific modulation data were concatenated across trials into a (16m x 1) vector,

where m is the number of trials and 16 is the number of samples within a 300ms phase window

(includes window edges). The mean over this vector provided our scalar estimate of modula-

tion. Note that this is simply a normalized form of variance, which makes the comparison of

single-unit and population-level results more straightforward. To make the relationship with

variance explicit, modulation can be rewritten as:

Mphase ¼
1

ðsRest þ 1Þ
2
E ðXphase � mRestÞ

2
h i

ð2Þ

Where the expectation on the right is essentially variance using the Rest mean (i.e. the

mean squared deviation from the average Rest phase firing rate).

Arm Preference was calculated independently for each phase of the task using the formula:

APphase ¼
Mcontra;phase � Mipsi;phase

Mcontra;phase þMipsi;phase
ð3Þ

An arm preference of 1 corresponds to a unit that is exclusively modulated during contra-

lateral trials, while an arm preference of -1 is the same for ipsilateral trials. In Figs 7 and S6,

and the accompanying analyses, the convention of left arm and right arm was used in place of

ipsi and contra. In analyses that used arm preference along with other features, independent

datasets were used to calculate each to avoid any artificial coupling due to sampling noise, e.g.

modulation and arm preference. The independent datasets consisted of reaches with the same

arm, but with the stationary hand held in a different horizontal starting position. Note also

that the scaling factor used in the modulation calculation cancels out of the arm preference cal-

culation, making it invariant to the choice of normalization.
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Principal components analysis

Principal components analysis (PCA) was used to identify low-dimensional representations of

population activity with the pca function in MATLAB. PCA computes an orthogonal basis set

that reflects the principal axes of variation in the data. Individual components do not strictly

correspond to observed activity patterns, and one should be wary of interpreting them as such,

yet the low-dimensional space spanned by the top few components has been frequently used

in systems neuroscience as a helpful descriptor of coordinated ensemble activity [19]. PCA

was selected over other dimensionality reduction techniques for its widespread use and relative

lack of assumptions. Additionally, PCA was used in two recent papers covering similar topics

to this one [10,11]. Therefore, using PCA over other alternatives was also intended to improve

generalization of our results to the existing literature.

Prior to fitting the models, firing rate data were soft-normalized using the same method as

in the modulation strength calculation:

zt ¼
xt � mRest

sRest þ 1
ð4Þ

An alternative normalization factor was used to create S6 Fig, replacing the denominator by

the full firing rate range + 5Hz [10,11,22].

Since Rest phase mean activity was already subtracted from individual units, we did not de-

mean again prior to computing PCA models. Measures of variance accounted for were not

inflated by capturing means because they were computed using the variance of the component

scores (Figs 7 and 8F):

V ¼ TrðCovðXPÞÞ ð5Þ

Where X is a (16m x n) data matrix of concatenated trials and P is an (n x p) projection

matrix, with m trials, 16 samples in the phase window of each trial (includes window edges), n
units, and p principal component dimensions.

Cross-validation approaches were used for all analyses and figures to address overfitting.

This provided accurate and generalizable estimates of variance capturing metrics that could

also be appropriately compared across datasets (i.e. across time or arms). For the covariance

alignment reported in Fig 6, models were trained on random partitions of the data which

included all three starting configurations, and alignment was computed across the two parti-

tions (Monte Carlo cross-validation). The use of all three configurations could partially align

the PCA subspaces with the small neural changes associated with different postures. This

would be most relevant during the Rest phase, where the most reasonable impact this could

have would be causing the subspaces for each arm to appear more aligned. However, we

observed the opposite pattern, that the subspaces already differed during the Rest phase (Fig

6), suggesting that this did not make a meaningful impact.

For the analyses presented in Figs 7, 8, S6 and S7, PCA models were tested on datasets that

were held out from model training. In these cases, the stationary hand was held in different

starting positions for the training and testing sets. While the position of the stationary hand

may influence neural activity and its relationship to behavior (i.e., tuning), the subspace

spanned by neural activity in either posture should be largely the same and appropriate for

cross-validation in PCA. Nonetheless, all analyses were designed such that any generalization

cost would be symmetric for the tested conditions and thus unlikely to introduce substantial

bias into statistical testing or data visualization.
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Dimensionality estimation

Dimensionality of the PCA subspace was estimated by optimizing the cross-validated recon-

struction of full-dimensional neural data from component scores. Only data with both hands

in the centered start positions were used. Given n units, m trials, and 16 samples (includes win-

dow edges) within the phase window for each trial, the following procedure was used:

1. Leave out the ith trial (16 samples) from the data matrix, yielding training data, X(−i)2R16(m

−1) x n, and testing data, X(i)2R16 x n.

2. Train PCA model of dimension p<n on X(−i), using singular value decomposition (SVD) to

compute the projection matrix, P(−i)2Rn x p

3. Leave out the jth unit from the testing data and projection matrix by removing the jth col-

umn and row from each, respectively, yielding XðiÞ� j 2 R16m x ðn� 1Þ
and Pð� iÞ� j 2 Rðn� 1Þ x p

. This

is the current unit that will be reconstructed.

4. Using the Moore-Penrose pseudoinverse, find a new projection matrix with the jth unit

removed, whose transpose is ðPð� iÞ� j Þ
þ
2 Rp x ðn� 1Þ

. This matrix projects the (n−1) dimen-

sional neural activity into the original p dimensional PC space, therefore computing com-

ponent scores in the absence of unit j.

5. Calculate the component score for the ith trial using the remaining units and the new pro-

jection matrix, then estimate the jth unit from that component score by projecting back into

the ambient space. As a single step, this calculation is:

X̂ ðiÞj ¼ ½Pð� iÞðP
ð� iÞ
� j Þ

þ
ðXðiÞ� jÞ

T
�j ð6Þ

6. Repeat for trials i = 1,. . .,m

7. Repeat for units j = 1,. . .,n

8. Repeat for component numbers p = 1,. . .,10

9. Take the number of components that minimizes the predicted residual error sum of squares

(PRESS) statistic:

PRESS ¼
Xm

i¼1

Xn

j¼1

ðXðiÞj � X̂ ðiÞj Þ
2

ð7Þ

This method reconstructs the full-dimensional neural data, independent of the training set,

by identifying consistent population structure. There are no mathematical constraints favoring

increased dimensionality, i.e. it is robust to overfitting. As such, the number of components

that minimizes the reconstruction error provides a conservative estimate of the dimensions

that meaningfully reflect population structure. Similar methods have been used previously for

assessing dimensionality reduction techniques for neural data and yielded comparable values

[29]. Using heuristics, such as the number of components to explain 90% variance, would be

inappropriate for our analyses. They are prone to overfitting, which could include noisy com-

ponents and impair analysis of model structure via coefficient weights.

Other studies have reported greater dimensionality estimates in PMd and M1, with values

ranging from 4 to 16 [78,79]. Estimates across the literature vary in terms of the estimation
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method used (cross-validated data reconstruction, variance accounted for), the particular

dimensionality reduction model (PCA, factor analysis), and the details of the behavioral para-

digm. The cross-validated data reconstruction technique used in the present study will tend to

yield conservatively low dimensionality estimates, and PCA also tends to reach optimal data

reconstruction in fewer dimensions than other models [29]. It is also possible that our recording

electrodes, which were arranged perpendicularly to the cortical surface, may have sampled a

restricted subspace of the intrinsic neural manifold as compared to chronically implanted arrays

that sample a wider horizontal spread. Neurons in the motor cortex with similar preferred

movement directions tend to be organized into columns [80], so each probe may sample units

with similar response properties along its axis. Indeed, many of the studies reporting greater

dimensionality estimates in the motor cortex have used arrays with more horizontal spread.

Covariance alignment

We computed a measure of similarity between pairs of subspaces that we call Covariance

Alignment. Our method is essentially the same as that previously used for comparing low-

dimensional spaces via factor analysis [30]. In short, this measure computes the proportion of

low-dimensional variance from one dataset that is also captured in the low-dimensional space

of another dataset.

Given data matrices XA, XB2R16m x n, the following procedure was used:

1. Train PCA models of dimension p<n on XA and XB, using SVD to compute the projection

matrices PA, PB2Rn x p

2. Project XA into its own p-dimensional space and compute the variance as:

VA ¼ TrðCovðXAPAÞÞ ¼ TrðCovðTAÞÞ ð8Þ

3. Project the p-dimensional representation of XA, which is TA, into the p-dimensional space

identified using XB and compute the variance as:

VA in B ¼ TrðCovðXAPAP
T
APBÞÞ ¼ TrðCovðTAP

T
APBÞÞ ð9Þ

4. Return the proportion of p-dimensional variance from dataset A that is also captured in

dataset B’s subspace using the ratio:

CA ¼
VA in B

VA
¼

TrðCovðXAPAPT
APBÞÞ

TrðCovðXAPAÞÞ
¼

TrðCovðTAPT
APBÞÞ

TrðCovðTAÞÞ
ð10Þ

This metric is subtly different from the alignment indices used in [10,11,22]. The key differ-

ence here is the double projection in the numerator, which means that we are specifically cap-

turing the proportion of low-dimensional variance from one dataset that is captured in the

low-dimensional space of another, rather than the ratio of overall variance captured in two dif-

ferent subspaces.

PCA coefficient analysis

Since components of PCA models form an orthogonal basis set, each was independently ana-

lyzed to determine its contribution to subspace divergence. Two statistics were calculated for

each component using held-out datasets.
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First, we projected activity during trials of each arm onto a single component, calculated

the variance of the projections for each arm, and expressed them as a ratio. This captured each

component’s contribution to discrimination between the arms. For component C, this calcula-

tion is:

VC;R=L ¼
VarðXRPCÞ

VarðXLPCÞ
ð11Þ

Where XR, XL2R16 m x n are data matrices for the right and left arms, respectively, and

PC2Rn x 1 is the projection matrix for component C. The log of this ratio will be far from 0 if

there is much more variance for one arm than the other along the axis defined by PC.

Second, we calculated a coefficient-weighted average of the arm preferences for all units. If

non-zero weights were only given to right arm dedicated units, this value would be 1; if weights

were evenly distributed across the spectrum of arm-preferences, this value would be 0. There-

fore, this measure captured the dependence of a given component on arm-dedicated units.

The coefficient-weighted arm preference, CAP, for component C was calculated as

CAPC ¼
AjPCjPn
i¼1
jPC;ij

ð12Þ

Where A2R1 x n is the vector of arm preferences for each unit.

Linear discriminant analysis

Population coding of movement was analyzed using Linear Discriminant Analysis (LDA) with

the fitdiscr function in MATLAB. LDA assumes that each class (target x limb combination) is

associated with a multivariate normal distribution over the predictor variables (spiking activity

of multiple units) having identical covariance but different means.

The feature matrix XLDA2Rm x n consisted of a single sample per trial for each of the n
units. For fine timescale analysis, this was the instantaneous firing rate. For models represent-

ing an entire phase, this was the mean firing rate during the 300ms phase window. Uniform

priors were enforced for all models. As it was expected that the covariance may change across

use of the two arms during reaching, LDA models were trained separately for each limb to

allow fitting of arm-specific covariance matrices. The target classification presented in Fig 8C

and 8D was performed only on trials where the non-reaching hand was held in the eccentric

position. The supplementary analyses presented in S1 Fig included data from all three starting

configurations. Targets in different configurations were treated as separate classes to avoid

confounds related to the different configurations. LDA was chosen for its robustness to viola-

tions of the given assumptions and its history of success with neural data [14,81].

Fine timescale analysis of population coding and subspace development

(heatmaps)

The same basic method was used for displaying fine timescale changes in population coding of

movements (via LDA) and covariance structure (via PCA, Covariance Alignment). The

method is depicted schematically in S8 Fig. Neural data were organized as 3D tensors (units,

time windows, trials). Comparisons were made between all possible pairs of time windows,

using fully independent trial sets to prevent overfitting. For LDA models, this consisted of

leave-one-out cross-validation; for Covariance Alignment, random partitioning into two data-

sets of equal trial numbers. Averages of the cross-validated results provided the 2D matrices

visualized using heatmaps in Figs 6B, 6C, 8C and 8D. A single row or column therefore reflects
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the similarity of population coding or covariance between a single timepoint and all other

timepoints across the trial. Block diagonal structure in the heatmaps reveals locally consistent

structure within task phases.

Permutation testing procedures

Permutation tests were used for both single and multi-factorial hypothesis testing when

parametric tests were inappropriate. Null distributions were constructed by constraining per-

mutations to only data that were exchangeable under the null hypothesis [82]. For example, we

maintained the crossed structure of Phase (Rest, Instruct, Move), by only permuting Phase

labels within units. 10,000 permutations were used for all analyses, and p-values were esti-

mated as the proportion of permutations resulting in test statistics that were at least as extreme

as what was observed. In cases where the observed test statistic was more extreme than any

permutations, we assigned a p-value of 1/number of permutations = 1.0e-4.

Supporting information

S1 Table. Proportions of significantly modulated single-units across task phases. For well

isolated single-units in each brain area, the proportions of the total population that were signif-

icantly modulated when compared with the Rest phase (two-sample t-test, p<0.05) are dis-

played in each cell. For each phase, single-units were classified as uniquely ipsi, contra, or

bilaterally modulated. Top row in each pair of rows represents Monkey O, bottom row Mon-

key W.

(TIF)

S1 Fig. Arm-specific neural patterns exist during Rest on predictable trials. Cross-validated

classification accuracy for hand (left column) and target (right column) assignments. LDA

models were trained on only trials that required use of the same arm as the previous trial, then

tested on either held-out repeating arm trials (blue lines) or switching arm trials (red lines).

Separate models were used for each timepoint. Horizontal grey lines indicate chance level. 13

Sessions for monkey O (top row); 7 sessions for monkey W (bottom row). Mean +/- standard

error across sessions.

(TIF)

S2 Fig. Distributions of modulation captured by units with different arm preferences. The

cumulative modulation captured by units at each value of arm preference is plotted for both

monkeys in each task phase. Units were first sorted according to their arm preference in an

independent dataset. The cumulative modulation of ipsi- and contralateral responses was then

computed at each arm preference value. Each datapoint indicates the proportion of modula-

tion accounted for by all units with arm preference values to the left of the indexed position.

Mean +/- bootstrapped standard error.

(TIF)

S3 Fig. Relationship between unit depth and arm preference. (A). The depth of the most

superficial electrode was set to a value of 0, providing a reference point for the depth of all

units (electrodes were spaced by 100um in a line along the length of the probe). Depth of each

unit is plotted as a function of arm preference for PMd and M1 in the Instruct and Move

phases. The histograms to the right display the marginal distribution of all unit depths.

Recordings in Monkey W were done with 24 channel probes, except for the left M1 probe

which had 32 channels. This resulted in less sampling between depths of 2.3 and 3.1mm. (B).

Units were classified as Contra-dedicated, Neutral, or Ipsi-dedicated (see Fig 5C and 5F). For

each category, horizontal black lines, circles, and extended vertical lines indicate the mean,
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median, and interquartile range. Asterisks indicate significant pairwise differences (permuta-

tion test, p<0.05) determined after an initial ANOVA for group differences.

(TIF)

S4 Fig. Modulation for the non-preferred arm does not increase with greater arm prefer-

ence. Companion figure for Fig 5A and 5B. (A) Modulation for the non-preferred arm plotted

against arm preference, for all units in each brain area and task phase. Log-linear best fit lines

are displayed in red. Inset figures belong to Monkey W. (B) Slopes of regression lines fit to

data from (A), independently for ipsi- and contra-preferring sub-populations. Mean +/- boot-

strapped 95% confidence interval. Note the different y-axis from Fig 4B. The slope was not sig-

nificantly greater than 0 in any condition, meaning that increased arm preference is associated

uniquely with greater modulation in the preferred arm, as opposed to an increase for both

arms that is just larger for the preferred arm.

(TIF)

S5 Fig. Dedicated signals persist with increased kinematic range. To determine whether

having a limited range of reach directions was responsible for the observation of arm-dedi-

cated signals, select analyses were performed again on data that included return movements.

By including these movements, which were opposite the direction of the outward reaches used

in the primary analyses, the range of sampled behavior was greatly increased. (A) Speed pro-

files for return movements following target acquisition during left- or right-hand trials. Indi-

vidual trials were aligned to peak return speed, indicated by the vertical red line. Both reaching

and stationary hands are plotted in each. Despite being unconstrained by the task, the non-

selected hand remained still during the return. Monkey O main, monkey W inset. Mean +/-

standard deviation. (B-D) Analyses from Fig 5 repeated using Move phase data concatenated

with 300ms of data beginning 200ms before the point of peak return speed, i.e. reach and

return. (B) Compare to Fig 5A. Modulation for the preferred arm plotted against arm prefer-

ence, for all units in each brain area. Log-linear best fit lines are displayed in red. Inset figures

belong to Monkey W. (C) Compare to Fig 5B. Slopes of regression lines fit to data from (B),

independently for ipsi- and contra-preferring sub-populations. Mean +/- bootstrapped 95%

confidence interval. (D) Compare to Fig 5F. The proportion of modulation within each parti-

tion from (C) during ipsi- or contralateral movements. Note that the total modulation is signif-

icantly lower for ipsilateral movements, particularly for Monkey W, and these data are only

displayed as proportions. Mean +/- bootstrapped 95% confidence interval.

(TIF)

S6 Fig. Subspace analysis using alternative firing rate normalization. Prior to performing

PCA, an alternative method of normalizing firing rates was used for these plots. Rather than

dividing by the standard deviation at Rest, each unit’s firing rate trace was divided by the full

firing rate range + 5Hz [10,11,22]. This will mitigate the effect of highly modulated units,

which PCA will preferentially represent otherwise. (A) Repetition of Fig 7D. (B) Repetition of

Fig 8F.

(TIF)

S7 Fig. Dedicated and distributed subspace projections. A-B. Projections for monkey O. A.

3D projections of activity from neural sub-populations partitioned based on their preferred

arm (see Fig 8A). Each PCA model was trained using trials where the reaching hand was either

the preferred hand (dedicated subspace) or the non-preferred hand (distributed subspace) of

the sub-population. Separate models were trained during the Instruct phase (300ms before to

500ms after instruction onset) and the Move phase (200ms before to 500ms after instruction

onset). The models were trained on trial-averaged data for each target to provide a single
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visualization for each group. Each target trace is color coded according to the cartoon in the

upper right. The projected data is from an independent validation set that included only 5 of

the 6 targets. Solid lines indicate data using the same hand as the training set (native hand),

and dashed lines indicate the opposite hand projections (cross hand). B. The data from A plot-

ted against time for the top 4 PC’s. C-D. Projections for monkey W.

(TIF)

S8 Fig. Method for fine timescale analysis of population coding and subspace separation.

This schematic outlines the process for fine timescale analysis of population coding using LDA

and leave-one-out cross-validation. Neural data were organized as 3D tensors (units, time win-

dows, trials). Models were trained to predict targets using a single time window and all but one

trial. Those models were then used to predict the target on the held-out trial, making separate

predictions based on neural data from each time window. The process was then repeated using

the next time window as training data until all possible pairs of time windows had been used

as training and testing data. This constituted a 2D matrix of “hit” booleans (number time win-

dows x number time windows) for the predictions of a single trial. After iterating over all trials

to be used as held-out test data, the mean was taken across trials to construct a single 2D

matrix of classification accuracy. The same basic process was used for visualizing the develop-

ment of subspace separation, but instead of leave-one-out cross-validation trial sets were

repeatedly divided into two random halves of equal size. Covariance alignment was then com-

puted between all possible pairs of timepoints for the two disjoint trial sets.

(TIF)
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