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Invariant errors reveal limitations in motor
correction rather than constraints on error
sensitivity
Hyosub E. Kim 1,2, J. Ryan Morehead3, Darius E. Parvin1,2, Reza Moazzezi4 & Richard B. Ivry1,2

Implicit sensorimotor adaptation is traditionally described as a process of error reduction,

whereby a fraction of the error is corrected for with each movement. Here, in our study of

healthy human participants, we characterize two constraints on this learning process: the size

of adaptive corrections is only related to error size when errors are smaller than 6°, and

learning functions converge to a similar level of asymptotic learning over a wide range of

error sizes. These findings are problematic for current models of sensorimotor adaptation,

and point to a new theoretical perspective in which learning is constrained by the size of the

error correction, rather than sensitivity to error.
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Movement errors are ubiquitous, arising from numerous
sources such as motor noise, fatigue, or changes in the
environment. A large body of evidence has revealed that

the motor system compensates for errors via sensorimotor
adaptation1. This implicit learning process is thought to be driven
by sensory prediction error, the discrepancy between the actual
and predicted sensory outcome of a motor command2–6. A core
issue for models of adaptation has centered on how this error
signal is used to modify motor output7–10.

In classic models of sensorimotor adaptation, the response to
error is assumed to be linear, with trial-by-trial corrections a
constant fraction of error size9,11. The theoretical foundation for

this relationship centers on the delta learning rule, where the
weights between putative sensorimotor neurons are updated as a
function of the magnitude of the difference between the actual
and predicted output9,12,13. A standard formulation of this type of
model is given by the following state-space equation:

znþ1 ¼ Azn þ Ben

where zn represents the state estimate of the perturbation on trial
n, and A is a retention factor, the proportion of the state retained
from one trial to the next. The error term, e, is multiplied by a
scalar learning rate, B, to determine the change in the state
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Fig. 1 Initial adaptation rates scale with error size, yet saturate to an invariant response magnitude. a Illustration of experimental apparatus and task
structure for Exp. 1. b Schematic view of clamped visual feedback paradigm, in which the angular path of the cursor is independent of hand movement
direction. c, d Behavior for all groups (n= 12 per group), divided into two panels for visualization purposes. The small clamp groups (c) demonstrate
adaptation rates which scale with error size, whereas the large clamp groups (d) show saturated responses. e Segmented regression indicates that the
initial adaptation rate scales between 0° and 4.4° before saturating for all errors above this break point (dashed vertical lines represent 95% CI). f
Sensorimotor aftereffects, measured during the first cycle following the clamp block. Dots are individuals; shading and error bars denote SEM. Gray shading
denotes cycles without visual feedback
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estimate from trial-to-trial due to sensory prediction errors.
However, empirical studies have shown limitations with the
assumption of a constant learning rate. When operationalized as
the ratio of the change in behavior relative to the error, sensitivity
appears to be high for small errors, with the system correcting for
a relatively large fraction of the error, and then rapidly decreases
as errors become large8,10,14,15.

However, due to potential confounds in standard sensorimotor
adaptation tasks, estimates of the error sensitivity function in
many of these studies may be contaminated by other learning
processes, such as the use of explicit aiming strategies16. To study
adaptation without interference from explicit learning or
performance-driven corrections, we recently introduced a method
in which the visual feedback is task irrelevant and invariant over
the course of the experiment17 (Fig. 1a, b). Despite full knowledge
of the task-irrelevant clamped visual feedback, participants
implicitly produce a marked change in performance. As shown in
our initial study with this method, performance changes resulting
from clamped feedback bear the classic hallmarks of adaptation,
including sign-dependent corrections, persistent aftereffects, local
generalization, and a dependency on the integrity of the
cerebellum.

The use of clamped visual feedback offers a new tool to address
a fundamental problem in error-based learning, namely, how the
response of the system varies as a function of error size. In studies
using a fixed, task-relevant perturbation (e.g., standard visuo-
motor rotation), error size is confounded with learning. As
learning unfolds, the mean error size becomes dramatically
smaller. To provide a cleaner assay of the responsiveness of the
adaptation system to errors of varying size, previous studies have
used errors that vary randomly in size and direction from trial to
trial, such that the overall mean error is zero10,14,15. A limitation
with this approach is that one can only measure trial-by-trial
changes. In contrast, with the clamp method, we can examine the
full accumulated adaptive response to errors of a given size since
the error signal remains invariant. Thus, we can assess not only
how changes in error magnitude influence the response of the
system, but also how this responsiveness might change over time
and training.

Our initial study with clamped visual feedback revealed
learning functions that were surprisingly invariant over a wide
range of error sizes (7.5–95°)17. This invariance was evident in the
initial rate of adaptation as well as in the final asymptotic value.
As noted above, prior studies indicate that sensitivity is reduced

to large errors8,10,14,15; it may be that the smallest value pre-
viously tested with the clamp method (i.e., 7.5°) falls within the
range in which the error-driven response is already saturated.

In the current study, we focus on small clamped errors (i.e.,
errors<7.5°), using perturbation sizes that are more representative
of the feedback that we typically experience from intrinsic motor
variability18. We expect that the response to these smaller
clamped errors will be dependent on the size of the error, and
thus, allow us to estimate the saturation point. Assuming we
observe some scaling of the response as a function of error size,
the clamp method also allows us to ask if this is evident in both
the learning rate and asymptote as predicted by current models of
adaptation.

Results
Initial adaptation rates only scale with error size for small
errors. In a between-subject design, participants (n= 96, 12 per
group) were presented with visual feedback that was clamped to a
fixed path which was angularly offset from the target by 0°, 1°,
1.75°, 3.5°, 6°, 10°, 15°, or 45°. This manipulation was explicitly
described to the participants and they were instructed to ignore
the feedback and simply move directly to the target (Fig. 1a).
With the exception of the 0° control group, all groups implicitly
adapted to the clamp (t11=−0.04, p= 0.97 for 0° group; t11 > 5.9,
p < 0.0001 for all other groups; Fig. 1c, d).

Within all adapting groups, there was an effect of clamp size on
the average per-trial rate of learning over the first five cycles
(ANOVA: F6,77= 6.45, p < 0.0001, ƞ2= 0.33). Although there was
a modest linear relationship between clamp size and early
adaptation rate (r82= 0.29, p= 0.01), the adaptation rate
appeared to be composed of two zones, one where the rate
scaled in proportion to error size, and another where rates were
invariant. To formally assess this hypothesis, we performed
segmented linear regressions. Taking model complexity into
account, a two-region segmented regression yielded the best
model (Supplementary Fig. 1). This model predicted that the
break point between the proportional and saturated zones was at
the remarkably low value of 4.4° (95% CI (3.9°, 4.9°), Fig. 1e).

These results, in combination with previous work8,10,14,15,17,
are clearly at odds with models entailing a fixed learning rate (i.e.,
adaptation scaling linearly with error size). Prior observations of a
nonlinear response to error have inspired models in which the
learning rate saturates for large errors13, or large errors are
discounted before the update step of the learning process10,14,19.
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Fig. 2 Implicit adaptation converges on a common asymptote. a The 1.75°, 3.5°, and 15° clamp groups in Exp. 2 (n= 10 per group) adapted at markedly
different rates (bar graphs depict mean of cycles 3–7). However, there was convergence of all three learning functions by the end of 160 cycles, and (b) no
difference between groups in the size of the final aftereffects. Asterisk in a denotes significant differences between groups early in the clamp phase. Dots
are individuals; shading and error bars denote SEM
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If exposed to a constant perturbation, these models can generate
similar adaptation rates and asymptotes in response to large
errors. However, these models would also predict a lower
asymptote in response to small errors in the linearly proportional
zone. Contrary to this prediction, with the exception of the 1°
group, the magnitude of adaptation at the end of training was
similar for a wide range of clamp offsets (Fig. 1f and
Supplementary Note 1).

Adaptation converges on a common asymptote. The observa-
tion of similar performance across a range of error sizes at the
end of training is tempered by the fact that we did not have a
sufficient number of trials to ensure that learning had become
asymptotic; as such, it is unclear if prolonged exposure to con-
stant errors of varying size will converge at a common asymptote.
To address this issue, we conducted a second experiment in
which the number of cycles was increased from 40 to 160. Par-
ticipants (n= 30, 10 per group) were exposed to clamped feed-
back with an angular offset of 1.75°, 3.5°, or 15°. These offsets
were chosen because they span the range of early adaptation rates
observed in Experiment 1 (Methods section). Consistent with the
results of Experiment 1, there was a clear scaling of the rates
across the proportional zone (ANOVA: F2,27= 18.6; p < 0.0001;
ƞ2= .58), with Tukey–Kramer post hoc tests revealing significant
differences between all pairwise comparisons (Fig. 2a). Strikingly,
the three groups reached a similar asymptote, with all groups

demonstrating final aftereffects of ~25° (ANOVA: F2,27= 0.39, p
= 0.68; ƞ2= 0.03; Fig. 2b; see also Supplementary Note 2).

Discussion
This dissociation between size-dependent early adaptation rates
and invariant asymptotic adaptation is at odds with models that
correct for a constant fraction of error size as well as error dis-
counting models (Supplementary Fig. 2 and Supplementary
Note 3). Even if the learning rate varies as a function of error size,
assuming a fixed retention factor, these models predict that
asymptotic behavior will diverge since the asymptote is deter-
mined by the equilibrium between learning and forgetting.

In addition to identifying a fundamental limitation with cur-
rent models of sensorimotor adaptation, our results draw atten-
tion to a more general issue. Behavioral responses to error are
usually interpreted through the lens of error sensitivity. This
perspective is apparent not only in studies of visuomotor adap-
tation, but is also evident in research on saccadic20, locomotor21,
and force field adaptation22. The sensitivity function is generated
by dividing the magnitude of the motor correction by the error
size. When applied to the behavioral data that we and others have
observed, this divisive operation generates a function in which
sensitivity is high for small errors and gradually decreases to near
zero for large errors (Fig. 3a, c).

Although this error sensitivity metric is mathematically capable
of approximating the behavioral effects observed with variation in
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Fig. 3 Adaptation assessed in terms of error sensitivity (left) or error correction (right). Here we plot data from several different studies10,17,23, including
the present one, using two ways to consider trial-by-trial changes in hand angle as a function of error size (Methods section). a Error sensitivity,
operationalized as the change in hand angle divided by error size, starts at an early maximum and quickly decays as errors increase in size. b The same
data, plotted in terms of the untransformed error correction, shows a function that starts small and then saturates, suggesting that the motor system
continues to produce a robust, invariant response over a wide range of error sizes. Plotting the aftereffect data in terms of a sensitivity function (c) also fails
to capture the relative invariance of these data within a given experimental context (d). Note the one discrepant point from Exp. 1 in panels C and D from
the 1° clamp condition; we suspect this is due to an insufficient number of trials to approximate asymptotic performance. Error bars denote SEM.
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error size, focusing on the untransformed behavioral responses to
errors of varying size suggests a different perspective on the
limiting factor in adaptation. As seen in Fig. 3b, adjustments in
motor output scale for small errors before quickly reaching a
saturation point that holds across a broad range of larger errors
(Fig. 3b). Depicting the actual behavioral change from sensory
prediction error highlights the limited dependency of the system
on error size, as well as the common asymptotic level of learning
in response to small and large errors (Fig. 3d). Thus, incorpor-
ating an update rule in which the correction (i.e., behavioral
change), rather than error sensitivity, is modeled as a function of
error size may offer a more appropriate framework for under-
standing the constraints underlying sensorimotor adaptation. The
data in Fig. 3b suggest that the error correction function,
expressed in terms of absolute change in heading direction from
trial-to-trial, would have a half-sigmoid shape with a saturation
point at a small error size.

We can envision three, non-mutually exclusive ways in which
current models of adaptation could be modified to capture size-
dependent early adaptation rates for small errors combined with
invariant asymptotic adaptation. First, the learning rate and
retention parameters could be coupled, scaling together with
error size24. For instance, small errors may elicit smaller correc-
tions and greater retention, while large errors may elicit larger
corrections but weaker retention. Whereas current models have
considered that learning rate may be dependent on error size, this
variant would require that the forgetting process is also error size
dependent (the A term in the state-space model equation).
Moreover, to achieve a common asymptote across different error
sizes constrains the form of the coupling between these two
parameters.

Second, the adaptation system may normalize its responses to
sensory prediction errors with repeated exposure, akin to nor-
malization processes observed in response to reward prediction
errors25. For example, the system may increase its responses to
small, yet persistent errors. Alternatively, responses to large errors
may diminish over time until reaching some intermediate nor-
malized update size. By this normalization hypothesis, the size of
the motor correction changes over trials and, due to the invar-
iance of the size of the clamped error, eventually converges on the
same value for all error sizes.

To this point, we have assumed that the clamped visual error is
the primary signal driving the change in behavior; however, other
error signals, in particular signals arising from proprioception,
may also impact adaptation to a visual perturbation. Thus, a third
possibility is that the asymptotic response may reflect the limit of
proprioceptive recalibration, which is independent of visual error
size. That is, as the heading angle changes due to the clamped
visual error, the proprioceptive sensory prediction error would
increase, but with the opposite sign. The asymptote would cor-
respond to the balance point between these two opposing error
signals.

Future work will be required to formalize these hypotheses and
develop experimental tests to evaluate the different mechanisms.
Regardless of the appropriate reformulation of models of sen-
sorimotor adaptation, we expect it will be fruitful to shift the
focus away from the error sensitivity of the learning system, and
instead, address the constraints on the behavioral change that
arises in response to the error.

Methods
Participants. Healthy, young adults (N= 126, 89 females, age= 21 ± 2 years old)
were recruited from the University of California, Berkeley, community. Each
participant was tested in only one experiment. All participants were right-handed,
as verified with the Edinburgh Handedness Inventory26. Participants received

course credit or financial compensation for their participation. The Institutional
Review Board at UC Berkeley approved all experimental procedures.

Experimental apparatus. The participant was seated at a custom-made tabletop
housing an LCD screen (53.2 cm by 30 cm, ASUS), mounted 27 cm above a digi-
tizing tablet (49.3 cm by 32.7 cm, Intuos 4XL; Wacom, Vancouver, WA). The
participant made reaching movements by sliding a modified air hockey “paddle”
containing an embedded stylus. The position of the stylus was recorded by the
tablet at 200 Hz. The experimental software was custom written in Matlab, using
the Psychtoolbox extensions27.

Reaching task. Center-out planar reaching movements were performed from the
center of the workspace to targets positioned at a radial distance of 8 cm. Direct
vision of the hand was occluded by the monitor, and the lights were extinguished in
the room to minimize peripheral vision of the arm. The start location and target
location were indicated by white and blue circles, respectively (both 6 mm in
diameter).

To initiate each trial, the participant moved the digitizing stylus into the start
location. The position of the stylus was indicated by a white feedback cursor (3.5
mm diameter). Once the start location was maintained for 500 ms, the target
appeared at one of 8 locations, placed in 45° increments around a virtual circle.
Participants were instructed to accurately and rapidly “slice” through the target,
without needing to stop at the target location. Visual feedback, when presented,
was provided during the reach until the movement amplitude exceeded 8 cm. As
described below, the feedback either matched the position of the stylus (veridical)
or followed a fixed path (clamped). If the movement was not completed within 300
ms, the words “too slow” were generated by the sound system of the computer.

In Experiment 1 (see below), the position of the cursor was frozen for 1 s once
the movement amplitude reached 8 cm. The participant was free to begin moving
back to the start location during this time. After the spatial feedback period, the
cursor disappeared. Once the participant’s hand was back within 2 cm of the start
circle, a white ring appeared, indicating the radial distance between the hand and
center start position. The ring was displayed to aid the participant in returning to
the start location, without providing angular information about hand position. Two
changes were made in Experiment 2 (see below): First, the cursor was turned off 50
ms after the hand crossed the virtual target ring. Second, during the return
movement, the feedback cursor reappeared when the participant’s hand was within
1 cm of the start. These changes reduced the time required for each trial and
allowed the participants to complete the extended number of trials required in
Experiment 2 within our time constraints. Average total trial time in Experiment 1
was 4.45 ± .62 s vs. 2.51 ± .26 s in Experiment 2.

Experimental feedback conditions. Across the experimental session, there were
three types of visual feedback. On no-feedback trials, the cursor disappeared when
the participant’s hand left the start circle and only reappeared at the end of the
return movement. On veridical feedback trials, the cursor matched the position of
the stylus during the 8 cm outbound segment of the reach. On clamped feedback
trials, the feedback followed a path that was fixed along a specific heading
angle17,28,29. The radial distance of the cursor from the start location was still based
on the radial extent of the participant’s hand during the 8 cm outbound segment,
but the angular position was fixed relative to the target (i.e., independent of the
angular position of the hand).

The primary instructions to the participant remained the same across the
experimental session: Specifically, that they were to reach directly towards the
visual target. Prior to the introduction of task-irrelevant clamped feedback trials,
participants were briefed about the feedback manipulation. They were informed
that the position of the cursor would now follow a fixed trajectory and that the
angular position would be independent of their movement. They were explicitly
instructed to ignore the cursor and continue to reach directly to the target. The
same instructions in abbreviated form (“Ignore the cursor and move your hand
directly to the target location”) were repeated verbally and with onscreen text after
20 movement cycles in Experiment 1 (exact mid-point) and every 40 movement
cycles during Experiment 2.

Experiment 1. In a previous experiment, adaptation to task-irrelevant clamped
visual feedback was statistically uniform to offsets between 7.5°-95°. The main goal
of Experiment 1 was to investigate if there was a dependency on error size for
angles smaller than 7.5°. Participants (n= 96, 12 per group) were randomly
assigned to one of eight groups that differed in terms of the size of the clamped
visual feedback: 1°, 1.75°, 3.5°, 6°, 10°, 15°, and 45° (with a 0° group included as a
control). The Euclidean distances for these clamp offsets, measured from the
centers of cursor and target, were as follows (smallest to largest, in mm): 0, 1.4, 2.4,
4.9, 8.4, 13.9, 20.9, and 61.2. Given that the target diameter was 6 mm and the
feedback cursor diameter was 3.5 mm, a substantial portion of the cursor over-
lapped with the target for the 1° and 1.75° clamps, and was fully embedded in the
case of the 0° clamp. Half of the participants trained with a clockwise clamp offset,
and the other half with a counterclockwise clamp offset.

The session began with two baseline blocks, the first comprised of 5 movement
cycles (40 reaches to 8 targets) without visual feedback and the second comprised
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of 5 cycles with a veridical cursor displaying hand position. The experimenter then
informed the participant that the visual feedback would no longer be veridical and
would now be clamped at a fixed angle from the target location. The clamp block
had 40 cycles. A short break (<30 s), as well as a reminder of the task instructions,
was provided at the mid-way point of this block. Immediately following the
perturbation block, there were two washout blocks, first a five cycle block in which
there was no visual feedback, followed by five cycles with veridical visual feedback.
Participants were debriefed at the end of the experiment and asked whether they
ever intentionally tried to reach to locations other than the target. All subjects
reported aiming to the target throughout the experiment.

Experiment 2. In Experiment 2 we assessed adaptation over an extended number
of task-irrelevant clamped visual feedback trials. The purpose of extending the
perturbation block was to ensure that participants reached asymptotic levels of
learning. We were particularly interested in whether asymptotic adaptation would
converge in response to small and large clamps.

Participants (n= 30, 10 per group) were assigned to either a 1.75°, 3.5°, or a 15°
clamped visual feedback group. Clockwise and counterclockwise perturbations
were counterbalanced within each group. As in Experiment 1, the session started
with two baseline blocks, five cycles without visual feedback and then 5 cycles with
veridical feedback. However, the number of trials in the clamped visual feedback
block was quadrupled to 160 cycles. We included one cycle with no visual feedback
after every 40 movement cycles. The purpose of these interspersed no-feedback
trials was to gauge adaptation magnitudes in the absence of the learning stimulus
(i.e., clamped visual feedback) at different time points within the extended clamp
block (Supplementary Fig. 3). Immediately prior to the no-feedback block, the
participant was informed that there would be a few trials without feedback and
reminded to always reach directly to the target. The experiment ended with a final
block of five cycles with veridical visual feedback of the participant’s hand position.

Comparison of error sensitivity and error correction. For the comparison of
error sensitivity and error correction functions in Fig. 3, we used the early adap-
tation rate (panels a and b) and aftereffect data (panels c and d) from the present
study, as well as data sets from three other studies that have compared adaptive
responses to a range of error sizes10,17,23. The data from Experiments 1 and 2 in
Wei and Kording10 were transformed from Cartesian coordinates (as presented in
their paper) to polar coordinates. The data from Bond and Taylor23 were restricted
to the aftereffect data from their Experiment 3 (comparison of adaptation to dif-
ferent rotation sizes). We used the data from the initial adaptation cycles (mean
change in hand angle over first ten movement cycles) and aftereffect phase from
Experiment 4 of Morehead et al.17 (comparison of different clamp offsets). To
obtain measures of error sensitivity, the raw response magnitudes were divided by
their corresponding error size.

Data analysis. All statistical analyses and modeling were performed using Matlab
2015b and the Statistics Toolbox. The primary dependent variable in all experi-
ments was endpoint hand angle, defined by the angle of the hand position relative
to the target at the time the radial distance of the hand reached 8 cm from the start
position (i.e., angle between lines connecting start position to target and start
position to hand). Additional analyses were performed using hand angle at peak
radial velocity rather than endpoint hand angle. The results were essentially
identical for the two dependent variables; as such, we only report the results of the
analyses using endpoint hand angle.

Outlier responses were removed from the analyses. To identify these, the Matlab
“smooth” function was used to calculate a moving average (using a 5-trial window)
of the hand angle data for each target location. Outliers were trials in which the
observed hand angle deviated by >3 SD from the moving average function. This
procedure resulted in the elimination of ~1% of trials involved in our statistical
analyses of early adaptation rates and aftereffects; our findings are the same
whether tests were performed with or without outlier removal (values reported in
main text are with outlier removal). In total, less than 1% of trials overall, with a
maximum of 2% for an individual, were removed.

Movement cycles consisted of eight consecutive reaches (one reach/target).
Early adaptation rate was quantified by averaging the endpoint hand angle values
over cycles 3–7 of the clamp, and dividing by the number of cycles (i.e., five) to get
an estimate of the per-trial rate of change in hand angle. (As a check, we performed
a secondary analysis using cycles 2–10 and obtained nearly identical results.) We
opted to use this measure of early adaptation rather than obtain parameter
estimates from exponential fits since the latter approach gives considerable weight
to the asymptotic phase of performance and, therefore would be less sensitive to
early differences in rate. This would be especially problematic in Experiment 2. The
aftereffect was quantified by using the data from the first no-feedback cycle
following the last clamp cycle. Details for all four no-feedback cycles in Experiment
2 are provided in the Supplemental section.

All t-tests were two-tailed. In order to confirm that there was a robust adaptive
response in Experiment 1, a paired t-test was performed comparing baseline hand
angle during the last cycle of the veridical feedback baseline to the first no-feedback
cycle (i.e., aftereffect) immediately following the perturbation block. Post hoc tests
following significant ANOVAs were performed using Tukey–Kramer’s Honest

Significant Difference in order to determine specific differences in group means.
Partial eta squared (η2) values are provided as a measure of effect size.

For the segmented linear regression (SLR) performed in Experiment 1,
contiguous regression lines were fit to the data, with each line having an
independent intercept and slope. Parameters for the regression lines were identified
by a least-squares fitting procedure. Boundaries for the adjoining segments were
estimated by finding the break point(s), an additional parameter defining where
two separate regression lines meet, that minimized the residual sum of squares.
Relative fits were compared using corrected Akaike Information Criterion (AICc)
values, a procedure that adjusts for the number of data points and assigns penalties
for extra parameters.

No statistical methods were used to predetermine sample sizes. The chosen
sample sizes were based on our previous study using the clamp method17, as well as
prior psychophysical studies of human sensorimotor learning29–32.

Reaction and movement times. Average movement times were quite fast, aver-
aging 119 ± 29 ms in Experiment 1 and 136 ± 25ms in Experiment 2. The
instructions did not impose any constraints on reaction time. On average, in
Experiment 1 participants initiated their reaches in 429 ± 72 ms, while in Experi-
ment 2 reaction times were 364 ± 54 ms. No significant correlations were found
between these temporal variables and our primary measures of adaptation (rate
and aftereffect magnitude).

Data availability. All code and data are available upon request.
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