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The blood oxygen level dependent (BOLD) signal, as measured using functional magnetic resonance imaging
(fMRI), is widely used as a proxy for changes in neural activity in the brain. Physiological variables such as
heart rate (HR) and respiratory variation (RV) affect the BOLD signal in away thatmay interferewith the estima-
tion and detection of true task-related neural activity. This interference is of particular concern when these
variables themselves show task-relatedmodulations. We first establish that a simplemovement task reliably in-
duces a change in HR but not RV. In group data, the effect of HR on the BOLD responsewas larger andmore wide-
spread throughout the brain than were the effects of RV or phase regressors. The inclusion of HR regressors, but
not RV or phase regressors, had a small but reliable effect on the estimated hemodynamic response function
(HRF) inM1 and the cerebellum.We next askedwhether the inclusion of a nested set of physiological regressors
combining phase, RV, and HR significantly improved themodel fit in individual participants' data sets. There was
a significant improvement from HR correction inM1 for the greatest number of participants, followed by RV and
phase correction. These improvementsweremoremodest in the cerebellum. These results indicate that account-
ing for task-relatedmodulation of physiological variables can improve thedetection and estimation of true neural
effects of interest.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Functional magnetic resonance imaging (fMRI) is widely used to
examine responses of the human brain to a variety of tasks and stimuli.
One disadvantage of the method is that it only provides an indirect
measurement of neural activity by measuring changes in the blood
oxygenation level dependent (or BOLD) signal (Ogawa and Lee, 1990).
These changes occur on a much slower time scale than changes in the
activity of local neural populations (Logothetis, 2003). A complex rela-
tionship exists between neural activity and the changes in blood flow,
volume, and oxygenation that form the basis of the BOLD signal
(Buxton and Frank, 1997; for review, see Logothetis & Wandell, 2004).
Fortunately, the BOLD response is essentially linear and time-invariant
(Boynton et al., 1996; Dale and Buckner, 1997; Friston et al., 1994);
therefore, the brain response tomanyevents can be efficiently extracted
with events separated by only a few seconds (Dale, 1999).

In order to determine whether a particular brain area is active in
such a task, researchers typically adopt a regression approach, using a
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general linearmodel (GLM) and regression analysis to identify brain re-
gions in which the BOLD response matches a set of predictions (Friston
et al., 1995; see Poline and Brett, 2012 for a broad evaluation of the costs
and benefits of this approach). Since the coupling between the neural
and BOLD responses has a similar shape across a wide variety of condi-
tions, a canonical hemodynamic response function (HRF) is frequently
employed in fMRI analyses (Friston et al., 1998). While this approach
can greatly simplify fMRI analysis, it does come at a cost, given that
the HRF has been shown to differ across individuals, brain regions, and
events (Handwerker et al., 2004). Generating a predicted brain response
using the canonical HRF can therefore result in a poorer fit in compari-
son to individualized, region-specific, or task-specific HRFs, potentially
leading to a mischaracterization of brain activity (Hernandez et al.,
2002; Handwerker et al., 2004).

The fit of any GLM can be diminished by failing to account for factors
that are correlated with each other, a problem that is especially
pronounced in event-related studies of BOLD signal that are more
susceptible to noise. Two important, measurable, and often ignored
physiological covariates are heartbeats and respiration (Glover et al.,
2000). The beating of the heart causes pulsations in blood vessels and
cerebrospinal fluid (CSF), creating artifacts near large blood vessels,
around ventricles, and even in deep sulci (Dagli et al., 1999). Additional
artifacts are introduced by respiration, as the rise and fall of the chest
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cavity during breathing causes both head motion and magnetic field
disturbances (Glover et al., 2000; Raj et al., 2001). It is therefore desir-
able to measure heartbeats and breathing to account for their influence
on the BOLD signal. The RETROICOR method developed by Glover et al.
(2000) provides one such approach, charting the phase of cardiac and
respiration processes relative to image acquisition. Variance attribut-
able to the phase of these processes may be removed in preprocessing
or accounted for by including nuisance regressors in a GLM.

One limitation of the RETROICOR correction is that it does not take
into account how changes in the rate of physiological processes affect
the BOLD signal. Changes in heart rate (HR), as well as respiration vari-
ance (RV, ameasurewhich accounts for changes in amplitude and rate),
can cause fluctuations in the BOLD signal (Birn et al., 2006, 2008;
Shmueli et al., 2007; Chang et al., 2009; Chang andGlover, 2009). Taking
these factors into account during resting state scans has been shown to
alter the spatial spread of connectivity maps (van Buuren et al., 2009;
and for review, see Birn, 2012). While resting state studies often
measure correlations associated with the “default mode network”
(Raichle et al., 2001; Greicius et al., 2003), one study found that these
correlations were in fact robust to correction for physiological noise,
but activations in a task-positive network were reduced (van Buuren
et al., 2009).

Importantly, changes in HR and RV are frequently task-related,
associated with variations in arousal (Tursky et al., 1969), movement
preparation (Damen and Brunia, 1987), response inhibition (for review
see Jennings and van der Molen, 2002), feedback processing (Crone
et al., 2003, 2005), cognitive interference and planning (van ‘t Ent
et al., 2014), and pharmacological state (Khalili-Mahani et al., 2013). In-
deed, changes in HR, RV, and other autonomic indicants, such as skin
conductance and pupil dilation, are common dependent variables in
the study of a range of cognitive processes and their associated brain
responses (for review, see Critchley, 2009). Furthermore, autonomic
variables are themselves regulated by efferent signals from the brain,
making the direction of influence between brain and body difficult to
discern (see Iacovella and Hasson, 2011).

We previously demonstrated the importance of considering task-
related changes in physiological processes in a study designed to
identify brain regions responsive to movement errors (Schlerf et al.,
2012). When physiological regressors were not included in the GLM
analysis, reaching errors led to a broadly distributed decrease in the
BOLD response in the cerebellum. However, therewas also a reliable re-
duction in HR following movement errors. When the model included
HR, the cerebellar deactivations were no longer evident. Instead, an in-
crease in the BOLD signal was observed on error trials, restricted to the
arm area of the anterior cerebellum. Thus, the expected error signal in
the cerebellum was only evident after task-dependent changes in HR
were included in the model of the BOLD response. Nevertheless, to
our knowledge, no other study has investigated the impact of physio-
logical noise correction on task responses in the cerebellum.

In the current study, we systematically investigated the potential
consequences of task-related fluctuations in HR and RV on the HRF, as
well on the model fit of the BOLD response, using a progressive series
of analyses. Rather than focusing onmovement errors, we examined re-
sponses to a simpler behavior: arm movements produced in the ab-
sence of visual feedback. We chose to measure responses to this
simple type of event for two reasons: First, it allowed us to situate the
error-specific changes observed by Schlerf et al. (2012) in themore gen-
eral context of movement-related changes. Second, the use of a simple
motor behavior decreases the likelihood that neural activity related to
cognitive processing (e.g., error processing) is driving the physiological
changes. As such, this would increase our confidence that the impact of
HR and RV on the BOLD signal do not reflect the efferent regulation of
autonomic processes (e.g., Kobayashi et al., 2007; Iacovella and
Hasson, 2011).

We first demonstrated that HR is consistently affected by armmove-
ment. In contrast, changes in RV are more variable. We then examined
the effect of these variables on the BOLD signal throughout the brain.
We next asked how the inclusion of physiological regressors in the
GLM influenced the shape of the estimated arm movement-related
HRF in twomotor regions: primary motor cortex (M1) and the cerebel-
lum. Finally, we quantified the added explanatory power of different
sets of physiological regressors, either in isolation or in combination.

Material and methods

Participants

Eleven healthy, right-handed participants were tested (7 female,
mean age 24.1 years). The participants provided written, informed con-
sent under a protocol approved by the University of California, Berkeley
Institutional Review Board.

Task

Prior to scanning, participants were fitted with a custom bite bar.
During the scanning session, the bite bar was mounted to the head
coil to minimize head movement. Stimuli were backprojected onto a
screen mounted inside the bore of the magnet and viewed via a mirror
mounted to the head coil. Froma supine position, the participants held a
robotic manipulandum (http://www.fmrirobot.org) in their right hand.
Themanipulandumwas positioned over the participant's abdomen and
could be freely moved in a plane parallel to the scanner bed.

Participants were trained to make short (8 cm) out-and-back
reaching movements along the axis of the body toward their head,
chiefly by flexion about the elbow. They were instructed to terminate
each return movement such that in between trials, the hand rested
comfortably near the navel. Participants were instructed to move
when a central fixation crosshair changed color from red to green. For
all runs, the green crosshair was presented for 500 ms, regardless of
inter-trial interval. Participants were told to initiate the movement as
soon as they saw the color change. To minimize corrective movements
and processing load, there was no visual feedback of hand position dur-
ing scanning. At the termination of each return movement (when the
hand coordinates were no more than 1 cm apart for a minimum of
500 ms), the start position of the hand for the next trial was automati-
cally adjusted to the center of fixation.

All participants completed a training session in a mock scanner 1–
7 days prior to the scanning session. This session served to familiarize
the participants with the bite bar, manipulandum, and scanning envi-
ronment, and to train them in the movement task. The training session
consisted of four runs and was designed to train participants to make
movements in the scanner of approximately uniform amplitude with-
out relying on feedback. The training runs provided feedback that be-
came progressively less informative as the training continued. In the
first run, the participants received online feedback of the cursor position
and feedback about reach amplitude at the end of each movement.
Reach amplitude feedback was given in numeric form, shown above
the fixation crosshair as a percentage of the desired 8 cm amplitude
for 500 ms immediately following completion of the return movement
(Fig. 1A). For the next run, they were only given reach amplitude feed-
back (no online cursor feedback), and for thefinal two runs, no feedback
was provided, as in the actual scan session (Fig. 1B). At various points in
the training session, the experimenter provided verbal coaching
concerning movement initiation, speed, and amplitude.

The scanning session consisted of an anatomical scan and three func-
tional scans: one localizer run and two task runs. The localizer run lasted
6 min and 40 s and consisted of 12 12-second blocks, with rest periods
lasting 21.3 s in between each block (Fig. 1C). There were two types of
blocks: reach and auditory (6 of each block type). Reach blocks were in-
dicated by the appearance of the word “Reach” on the screen. Partici-
pants then produced eight out-and-back movements, initiating each
movement when they saw the fixation crosshair turn green. Over each
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Fig. 1. Task. Participants were instructed to move when a red crosshair turned green.
Participants were first trained with a visible cursor and feedback about reach amplitude
(A). This feedback was eliminated during the late training runs. During task runs,
participants did not see a cursor or feedback, and movement onset cues appeared on a
pseudorandom schedule with the inter-movement interval lasting between 4 and 20 s
(B). During reach blocks of the localizer run, participants were cued at the onset of the
block with the appearance of the word ‘Reach’. In each block, eight green movement
onset cues appeared, once every 1500 ms (C, only the first two of eight movement cues
are shown).
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12-second block, the crosshair turned green every 1500 ms. Auditory
blocks were indicated by the appearance of the word “Listen” on the
screen, and participants heard eight popping sounds, one every
1500 ms. These trials were included for a separate task and will not be
discussed further. The reach and auditory blocks alternated in a pseudo-
random manner, with the order counterbalanced across participants.

The two task runs (as well as a practice task run completed during
the anatomical scan) consisted of 30 randomly timed reaches, with
inter-movement intervals ranging between 4 and 22 s, for a run
duration of 5min (Fig. 1B). To ensure our ability to obtain parameter es-
timates at twelve lags (24 s) following eachmovement, an optimization
procedure was used to create the order of the inter-movement inter-
vals: 1000 random sequences of intervals were generated, and the six
most efficient were selected, based on the contrast Move vs. Rest.
From these six, sequences were selected at random for each
participant's training, practice, and task runs.

Efficiency was calculated following the guidelines of Dale, 1999,
according to the equation:

Efficiency ¼ 1=trace XTX
� �−1

� �
ð1Þ
where the designmatrix X= [X1X2… X12] is a horizontal concatenation
of delta (stick) functions that represent the stimulus timing at each lag.
While efficiency is typically computed for a particular contrast, in the
case of HRF extraction that contrast is simply the identity matrix.

Imaging parameters

Data were collected on a 3 T MAGNETOM Trio scanner (Siemens
Healthcare, Erlangen, Germany) at theHenryH.Wheeler, Jr. Brain Imag-
ing Center at the University of California, Berkeley. A 12-channel
receive-only radiofrequency head coil was used. One high-resolution
T1-weighted MPRAGE anatomical scan (TR, 1900 ms; TE, 2.52 ms;
1 × 1 × 1 mm voxels; acquisition matrix 176 × 256 × 256; field of
view 17.6 × 25 × 25 cm) was acquired for each participant. Echo-
planar imaging (EPI), specifically, a custom variant of ep2d_bold on
VB15 software, was used to collect functional imaging data (gradient-
echo EPI sequence; TR, 2000 ms; TE, 26 ms; 36 sagittal slices acquired
linearly from left to right; 3.3 × 3.13 × 3.13 mm voxels; flip angle, 90°;
acquisition matrix 64 × 64; field of view 20 × 20 cm; 150 volumes per
task run, 200 volumes per localizer run) using parallel imaging
reconstruction (GRAPPA) with an in-plane acceleration factor of 2.

For the majority of participants, these parameters did not result in
whole-brain coverage; small portions of the lateral aspects of the
brain were excluded. Slices were positioned with a bias toward captur-
ing the left precentral gyrus, the more lateral of our two regions of
interest. All regions of interest were well medial to the slice positioning
boundaries.

Ruling out MRI artifacts

To ensure high quality functional scans, pilot scans of a phantom
were run using task runs from the present study. Previouswork has sug-
gested that movement of a similar robotic manipulandum was not suf-
ficient to cause any fMRI artifacts (Diedrichsen et al., 2005); we sought
to confirm this result using our manipulandum and scanner. We also
sought to assess the impact of movement in the scanner bore on data
quality when parallel imaging reconstruction techniques (GRAPPA)
are used.

These scans were collected with various configurations: 1) with and
without an experimenter moving her arm in the scanner bore at each
movement cue onset, 2) with and without the presence of the robotic
manipulandum, and 3) with and without GRAPPA (total of eight pilot
scans). We then generated statistical maps of the temporal signal-to-
noise ratio (tSNR). Inspection of the tSNR within the scans of the phan-
toms revealed that the use of GRAPPA halved tSNR, an expected cost of
acceleration. In contrast, movement in the scanner bore reduced tSNR
by only about 10% and the presence of the robotic manipulandum had
no effect (See Supplementary Material).

Of particular concern was the avoidance of a “striping” artifact that
can result when scanner movement interacts with interleaved slice ac-
quisitions (See SupplementaryMaterial). Visual inspection of the phan-
tom scans and the data from the present study confirmed that the use of
a linear slice acquisition scheme successfully prevented the appearance
of this artifact.

fMRI data preprocessing

Imaging data were preprocessed and analyzed using SPM5 (http://
www.fil.ion.ucl.ac.uk/spm/) and custom routines written in Matlab
(http://www.mathworks.com/products/matlab/). The first five vol-
umes of each run were discarded to allow for T1 equilibration effects.
Images were slice-time corrected using sinc interpolation, then
realigned to themean image of each run to correct for headmovement.
All images were then coregistered to an anatomical scan and smoothed
with a Gaussian kernel (FWHM= 8 mm).
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Physiological monitoring

During scanning, physiological signals were recorded using a
BIOPAC physiological monitoring system (http://www.biopac.com).
Heartbeat was measured using a photoplethysmograph placed on the
participant's left index finger. Participants were instructed to rest their
left hand comfortably at their side to avoid movement-related artifacts
in the signal. Respirationwasmeasuredwith a pneumatic pressure sen-
sor placed several centimeters below the sternum and held in place by
an elastic strap. Once a clear signal was established, participants were
instructed to breathe normally. Cords from both sensors were checked
once the participant was placed in the scanner to ensure that the arm
movements did not alter the quality of the physiological signals. Analog
TTL signals generated by the scanner were recorded to time lock these
physiological measurements with the EPI images. All data were record-
ed at 125 Hz, with separate recordings initiated for each EPI sequence.
Recordings began at least 10 s before the start of scanning and lasted
at least 20 s past the termination of the imaging sequence.
Table 1
Regions of interest.
T-statistic values at the local maximum at center of ROI in M1 and cerebellum (T-peak),
along with center coordinate of each ROI. ROIs were formed by including the 83 nearest
contiguous voxels above the threshold (p b .05, family-wise error corrected). Voxels not
included in clusters surrounding local maxima using this threshold were excluded from
ROIs.

Participant M1 T-peak M1 coordinate Ce T-peak Ce coordinate

1 10.49 −30 −28 68 11.68 7 −56 −13
2 14.54 −21 −45 58 10.54 16 −43 −27
3 13.7 −23 −32 68 8.39 25 −61 −19
4 10.38 −22 −30 69 9.16 28 −42 −28
5 17.13 −18 −34 64 15.45 16 −32 −26
6 9.76 −12 −19 68 11.94 19 −25 −28
7 12.85 −27 −29 69 16.09 2 −42 −10
8 12.76 −28 −9 57 20.76 27 −20 −26
9 14.42 −45 −20 58 16.15 4 −30 −11
10 8.69 −12 −19 68 9.86 28 −13 −19
11 9.28 −28 −28 59 9.78 22 −27 −28
Assessment of task-related changes in physiological variables and creation
of physiological regressors

The effect of reachingmovements on our two physiological variables
of interest, heart rate (HR) and respiratory variation (RV), was assessed
at the group level and individually. Using HR and RV regressors, we
evaluated task-related changes by time-locking the estimate of these
variables to each movement cue onset. This procedure was performed
separately for each run, with the data normalized by subtracting out
the mean value for that run.

Physiological regressors were created using the Physiological Log
Extraction for Modeling (PhLEM) v1.0 toolbox for SPM5 (Verstynen
and Deshpande, 2011). The PhLEM package marks respiration and
heartbeat events using an automatic peak detection algorithm. On a
few occasions, the spacing between the detected peaks indicated that
the algorithm failed to detect a peak. In these cases (0.03% of all events),
the data were visually inspected and peaks weremanually added at the
appropriate deflection in the waveform.

Regressors to predict the effects of respiratory and cardiac phase
weremade using the RETROICORmethod (Glover et al., 2000) as imple-
mented in PhLEM (Verstynen and Deshpande, 2011). Using a Fourier
expansion, the first two harmonics of the heartbeat and respiration
events were computed. Both sine and cosinewaveformswere included,
yielding a total of eight phase regressors.

The HR time series was computed following themethods outlined in
Chang et al. (2009). For each 6 s window centered on a given 2 s TR in
the fMRI time series, the mean inter-beat interval was computed. This
interval was then inverted and multiplied by 60 to convert the data
into a measure of beats per minute. This time series was then shifted
by 0–11 TRs to produce 12 heart rate regressors at lags of 0–22 s.
These will be referred to as HR regressors.

The respiration time series was computed using a measure of respi-
ratory variation (RV) (Chang et al., 2009), a simpler andmore robust al-
ternative to respiration volume per unit time (Birn et al., 2008).
Following previous work, we opted to examine task-related changes
in RV rather than peak-to-peak respiration rate (Chang et al., 2009).
The RV regressor captures changes in both depth and frequency of
breaths, yielding a measurement that is associated with tidal volume.
Changes in tidal volume are hypothesized to trigger a feedback loop in-
volving vasodilation, blood flow changes, and ultimately, compensatory
changes in the rate and depth of the breaths themselves (Birn et al.,
2006; Chang and Glover, 2009). Similar to the procedure for HR, RV
was obtained by computing the standard deviation of the respiration
waveform within a 6 s sliding window centered on each 2 s TR. This
time series was then shifted by 0–11 TRs to produce 12 respiration
volume, RV regressors.
Effects of physiological variables on BOLD response and movement-related
activations

Separate GLMs were run for each of the two task runs for each par-
ticipant. The basic, uncorrected GLM modeled movements as delta
(stick) functions at movement cue onset and at 11 lags of 2 s each,
using a Finite Impulse Response (FIR) expansion model. Additional
GLMs included different sets of physiological regressors. The basic phys-
iological regressors were 12 lags of heart rate (HR), 12 lags of respirato-
ry variation (RV), or 8 phase regressors. The set of phase regressors
always included both cardiac and respiratory phases, implemented
using the RETROICOR method (Glover et al., 2000).

To characterize the effects of RV, HR, and phase on whole-brain ac-
tivity, group-level statistical maps of the effects of each of these sets of
regressors were calculated. Three separate GLM analyses from the two
task runs were performed, each sharing movement onset regressors,
while differing in the set of nuisance regressors (one GLM each with
RV, HR, or Phase). To assess the spatial distribution of variance ex-
plained by each of these sets of nuisance regressors, beyond that ex-
plained by the shared movement regressors, whole-brain F-statistic
maps (including all 12 lags of the physiological nuisance regressors)
were created for each set of nuisance regressors for each individual.
These are shown in Fig. 4A-C.

Group-level statistical maps of the Move vs. Rest contrast were cal-
culated both with and without each physiological correction, for a
total of six maps. To assess the spatial distribution of variance explained
by the movement regressors, whole-brain F-statistic maps for the con-
trast Move vs. Rest (including all lags in themovement onset regressor)
were created from each GLM. Only the effect of movement as estimated
using the uncorrected GLM is shown in Fig. 4D.

These maps were first calculated at the individual level and then
warped to the MNI152 atlas template (Montreal Neurological Institute,
Montreal, QC, Canada) and resampled to the atlas's 1 × 1 × 1 mm reso-
lution for display purposes only. These and all subsequent visualizations
of fMRI data were created using AFNI (http://afni.nimh.nih.gov). Note,
however, that all analyses were conducted in participants' native space.

ROI localization

We focused on two a priori anatomical regions of interest (ROIs) to
examine activations during arm movements. The precentral gyrus ROI
was selected to include contralateral primary motor cortex, and the
right anterior lobe of the cerebellum (lobules I–V) ROI was selected to
include the ipsilateral cerebellar representation of the hand (Table 1).

A GLM analysis was performed on the localizer data from each par-
ticipant. Movement blocks and the irrelevant sound blocks were
modeled by convolving their onset timing with the canonical

http://www.biopac.com
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hemodynamic response function (HRF) in SPM. No physiological re-
gressors were included in this analysis. Selecting ROIs based on their
fit to a canonical HRF may introduce a bias in the estimates of the
deconvolved hemodynamic responses, as this will preferentially identi-
fy voxels in which the response already resembles the canonical HRF.
However, the block design of the localizer task reduces this bias, as
the model fit in such a design is only weakly affected by the choice of
response function (Handwerker et al., 2004, 2012).

Whole-brain t-statisticmaps for the contrastMove vs. Restwere cre-
ated. Local maxima in our a priori regions of interest were selected as
peaks around which to center the individually specified ROIs. From
these peaks, the ROIs were expanded outward to include all of the
contiguous voxels within the t-statistic map thresholded at p b .05,
family-wise error corrected.

The number of voxels meeting this statistical criterion within each
ROI was computed for each individual. Across participants, the smallest
A

B

C

D E

Fig. 2. Regions of interest andmovement-evoked BOLD responses. Group-level t-statisticmaps
Overlapmapof individual 83-voxel ROIs inM1 (B) and cerebellum (C), spatially normalized for v
at right indicates proportion of overlap of the ROIs of individual participants. Midsagittal view
measured during task runs, is plotted for individuals (thin lines, different color for each partici
number of voxels meeting this criterion was 83. To keep the size of the
ROIs constant, the cerebellar and M1 ROIs were each limited to the 83
closest contiguous voxels. While M1 ROIs were centered on local
maxima in the left (contralateral) precentral gyrus, the ROI could ex-
tend beyond the precentral gyrus. No local maximum was identified
within the precentral gyrus for one participant. However, we were
able to identify a peak in the postcentral gyrus, based on visual inspec-
tion of the anatomical scan to which functional images were
coregistered, with the surrounding set of 83 contiguous voxels extend-
ing into the precentral gyrus. For two additional participants, a small
number (b10) of voxels in the ROI extended into the postcentral gyrus.

Cerebellar ROIs were centered on localmaxima in the right ipsilater-
al anterior lobe (lobules I–V). Tomake the cerebellar ROIs, the t-statistic
map was first masked by the cerebellar segmentation produced by the
Spatially Unbiased Infra-tentorial (SUIT) toolbox in SPM5 (Diedrichsen
et al., 2009). These masks were hand-edited by overlaying them on
for the contrastMove vs. Rest in the localizer run, thresholded at p b .001, uncorrected (A).
isualization only and overlaid on group-averaged anatomical slices inMNI space. Color bar
of slices is shown on the right for each panel. Mean evoked change in the BOLD signal, as
pant) as well as the group (thick lines), for M1 (D) and for the cerebellum (E).



Table 2
Comparison of deconvolved HRFs from the Uncorrected model with each of seven
Corrected models.
The interaction term quantifies time-dependent differences in the HRF between models.
Significant interaction effects were found for all models that included HR (bold).

M1 Cerebellum

Model Interaction F Interaction P Interaction F Interaction P

RV + HR + phase 4.64 0.0001 3.98 0.0001
HR + phase 5.72 0.0001 6.43 0.0001
RV + phase 0.93 0.51 0.73 0.71
HR + RV 3.98 0.0001 4.09 0.0001
HR only 5.02 0.0001 6.96 0.0001
RV only 0.71 0.73 0.41 0.95
Phase only 1.86 0.053 1.15 0.33
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the anatomical scan for each participant and removing voxels outside
the cerebellum (e.g., from parts of occipital cortex that lie just dorsal
to the anterior lobe of the cerebellum).

For visualization purposes only, a group-level t-statistic map for the
contrast Move vs. Rest was created, and the ROIs were warped to the
MNI (M1) or SUIT (cerebellum) templates and overlaid on a group-
averaged anatomical scan in MNI space to create an overlap map
(Fig. 2). For comparison of task-related changes in the BOLD time series
to task-related changes in HR and RV, the raw BOLD signal in these re-
gions was first normalized by converting to units of percent signal
change (subtracting, from each timepoint at each voxel, the mean
value of each voxel within each run, and then dividing by the mean
value). The mean time series was then calculated for the M1 and cere-
bellar ROIs for each individual, and these data were time-locked to
each movement cue onset to visualize task-related changes in the
BOLD signal.

HRF estimation

As described in Assessment of task-related changes in physiological
variables and creation of physiological regressors Section 2.7, a separate
GLM was run for each of the two task runs for each participant. The
basic, uncorrected GLM modeled movement cue onsets and 11 lags of
2 s each, using a Finite Impulse Response (FIR) expansionmodel.Within
theM1 and cerebellar ROIs, parameter estimates were obtained and av-
eraged across voxels. The mean parameter estimates for the contrast
Move vs. Rest within each ROI, when plotted over the 11 lags, provide
a good estimate of the hemodynamic response to movement within
the ROI.

Additional GLMs included combinations of sets of physiological re-
gressors: 12 lags of HR, 12 lags of RV, or 8 phase regressors. The set of
phase regressors always included both cardiac and respiratory phases,
as commonly implemented using the RETROICOR method (Glover
et al., 2000). This approach is better suited for comparing rate-
sensitive corrections (RV, HR) to rate-insensitive ones (Phase), and pre-
cludes comparing the phase-based influences of respiratory and cardiac
processes to each other directly. We estimated HRFs from models in-
cluding HR alone, RV alone, phase alone, all pairwise combination of
these three regressors (HR + RV, HR + phase, and RV + phase), and
a model that included all three.

In summary, the HRF was estimated using eight separate GLM anal-
yses: the Uncorrected model (not including physiological covariates)
and the seven Corrected models (Table 2). The parameter estimates
comprising the deconvolved HRF for each of the Corrected models
Fig. 3. Change in physiological measures evoked by reaches. Individual and groupmean evoked
subtracting the mean values across each run. Shaded areas represent standard error of the m
participants in group plot. Vertical lines indicate movement cue onset, time = 0 s. Participant
windows, and whose model fits were significantly improved by the inclusion of regressors bas
were compared to those of the Uncorrected model using a 2-way
repeated-measures ANOVA, with factors Time (12 TRs beginning with
movement cue onset) and Model (2 models: Uncorrected vs.
Corrected).

Percent variance explained and model comparisons

The percent variance explained by each of the eight models was cal-
culated and compared to that of the other models using three tiers of
nested model pairs. The first level involved a comparison of each of
the models containing a single set of regressors (HR at 12 lags, RV at
12 lags, or the 8 phase regressors) to theUncorrectedmodel. The second
level compared models with two sets of regressors to the models
containing the individual sets of regressors (e.g., HR plus phase was
compared to HR only and, in a separate comparison, to phase only).
The third level compared the model that included all three regressors
to each of the three paired-regressor models.

Analyzing nested models allowed us to determine what effect each
additional regressor or set of regressors had on the overall percent
variance explained, as well as to determine whether the variance ex-
plained by a given set of regressors could be redundantly explained by
another set of regressors. This is particularly important, as it was
previously unknown whether RV and HR have redundant effects on
the BOLD response, especially in a task-dependent context. It is possible
that both variables will provide a comparable improvement in fit
over the uncorrected model. However, Schlerf et al. (2012) found
that only HR provided a useful correction, perhaps related to the obser-
vation that movement errors caused a significant change in HR, but not
in RV.

Each additional tier of models includes more parameters, and as
such will increase the explained variance. To determine whether the
additional parameters explained significantly more variance, pairwise
F-tests were used, taking into account the changes in degrees of free-
dom. These were calculated according to the equation for the compari-
son of nested models, where a reduced model contains some subset of
the regressors used in the fullmodel:

F ¼ RSSreduced−RSSfull
� �

= Pfull−Preduced
� �� 	

= RSSfull= N−Pfull−R
� �� 	 ð2Þ

where RSS is the Residual Sum of Squares, P the number of regressors
(or parameters), N the number of data points in each fMRI time series
(run), R the number of runs, and where the reduced model is the
model that includes fewer physiological parameters than the full
model, at each level of comparison.

We note that transfer functions have been proposed to describe the
relationship between HR (Chang et al., 2009) or RV (Birn et al., 2008)
and the BOLD signal. These functions may be convolved with the HR
and RV time series to produce a single regressor describing the predict-
ed changes in each variable. For our study, it would have been possible
to use a Finite Impulse Response expansionmodel for thedeconvolution
of HRFs, and then use this transfer function for all other analyses. How-
ever, given the variation in HRF shape across individuals, tasks, and
brain regions (Handwerker et al., 2004), wewere interested in whether
the transfer functionmight also differ across brain regions. In particular,
the cerebellum has not been featured in the calculation of these func-
tions, and, in fact, is often cut off by the slice selection procedure. As
such, the current study provides a first effort to measure cerebellar-
specific influences of RV and HR. Thus we chose to estimate responses
from a set of lagged regressors. This agnostic approach imposes no
constraint on the shape of the transfer function between physiological
change in heart rate (HR, panel A) and respiratory variation (RV, panel B), normalized by
ean across movement trials in individual plots, and standard error of the mean across

s whose movement-evoked changes in HR or RV were significant over either 5- or 11-TR
ed on these measures, are noted (see legend).
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variables and the BOLD signal. This allows for the flexible allocation of
explainable variance to any of the lagged regressors, rather than desig-
nating certain lags to bias this allocation.
Results

Head motion

Use of sagittal slices ensured that the majority of head movement
would be in-plane, mitigating its influence. Head motion during the
task was minimal, likely because the participants were restrained by a
bite bar and completed a training session within the scanner environ-
ment. The maximum excursion of the head in any direction was calcu-
lated for each of the localizer and task runs. The median maximum
excursionwas 0.3mm (mean=0.4mm, sd= 0.2mm) for the localizer
run and 0.2mm(mean=0.2mm, sd=0.8mm) for the task runs. Head
position drifted more than 1 mm in only two individuals, both during
the initial localizer run (1.3 mm and 1.4 mm).
Evoked change in heart rate and respiration

Across participants, each reach induced an increase in heart rate of
about 1%, peaking at 4 s aftermovement onset and returning to baseline
at approximately 8 s (Fig. 3A). This result is in agreement with previous
reports of the influence of movement on HR (Damen and Brunia, 1987;
Jennings et al., 1991, 1992; Schlerf et al., 2012). A negligible mean in-
crease of about 0.0015% was observed for RV, with two broader peaks,
one around 6 s after the movement cue and the other at around 16 s
(Fig. 3B).

To statistically evaluate these changes, one-way repeated-measures
ANOVAs were conducted on the two dependent variables (HR, RV).
Four time windows were used in separate ANOVAs to identify short-
and long-term changes evoked bymovements, as well as changes lead-
ing up to themovement and longer-scale fluctuations. The first window
was limited to the five samples after the movement, spanning 0–10 s.
The second and third windows each included eleven samples: one ex-
tended from 20 s prior tomovement cue onset and included the sample
coincident with the movement cue onset (time= 0 s), while the other
extended from the movement cue onset to 20 s following the move-
ment cue onset. The fourth window included 21 samples, starting 20 s
prior tomovement cue onset and extending to 20 s after themovement
cue onset.

At the group level, the effect of time onHRwas significant for all four
timewindows, although the effect was considerably weaker in thewin-
dow preceding the movement cue onset, and would not survive a cor-
rection for multiple comparisons (5 sample: F(4,10) = 17.12,
p b .00001; 11 sample preceding: F(10,10) = 2.05, p = .04; 11 sample
following: F(10,10) = 12.06, p b .0001; 21 sample: F(20,10) = 7.85,
p b .00001). In an analysis of each individual (Fig. 3), six of the 11 partic-
ipants' data sets contained significant effects (p b .05) of time on HR
over the 5-sample window, four over the 11-sample window following
movements, and two over the 21-samplewindow. No participant's data
contained a significant effect of time on HR over the 11-sample window
preceding movements.

At the group level, the effect of time was not significant for RV over
any timewindow (5 sample: F(4,10)=1.68, p= .17, 11 sample preced-
ing: F(10,10) = 0.88, p = .56; 11 sample following: F(10,10) = 1.22;
p= .29, 21 sample: F(20,10)=1.24; p= .23). In the individual analysis,
one participant's data contained a significant effect of time (p b .05) on
RV over the 5-sample window, two participants' data were significant
over the 11-sample window followingmovements, and one was signif-
icant over the 21-samplewindow. No participant's data contained a sig-
nificant effect of time on RV over the 11-sample window preceding
movements.
Whole-brain effects of HR, RV, phase, and movement regressors

Fig. 4 displays the group-level whole-brain F-statistic maps,
thresholded at p b .001, uncorrected (see Assessment of task-related
changes in physiological variables and creation of physiological regres-
sors section). The effect of HRwas widespread throughout the brain, in-
cluding bothM1 and the cerebellum. The effectwas located primarily in
gray matter and extending to some subcortical structures. In contrast,
very few (only five total) voxels reached the same threshold for the ef-
fect of RV. The effect of phase was moderate, primarily evident in
periventricular spaces and other loci near transitions between tissue
types. This pattern is expected as phase correction is intended to correct
for bulk motion of the head and chest cavity, as well as pulsatile
(cardiac) motion (Glover et al., 2000).

A parallel analysis was used to test for the effect of the movement
onset regressors (for any of the 12 lags). This produced an F-statistic
map revealing widespread effects of arm movements (Fig. 4D). Note
that this effect is not restricted to motor structures; rather, this uncon-
strained probe is likely sensitive to a range of effects correlated with
many aspects of movement with differing time courses. However, the
regions of greatest effect in Fig. 4D correspond to regions activated by
movement in the localizer run.

Movement- and physiological variable-related activations appear to
be greatly diminished in the lateral aspects of the brain. As noted in
Imaging parameters section 2.3, our acquisition parameters ensured
cerebellar coverage but did not always permit whole-brain coverage,
and excluded these lateral regions in participants with wider brains.

Functionally defined regions of interest

The localizer run was used to identify functional ROIs. Fig. 2A shows
a group-level t-statistic map of the contrast Move vs. Rest during the
localizer run, warped to MNI space and thresholded at p b .001, uncor-
rected (Table 1). Movements during this localizer activated a network
of regions including the left pre- and post-central gyri, regions within
the cingulate, bilateral insular, and right lateral frontal cortices, and
the cerebellum bilaterally (Fig. 2A).

Table 1 lists the coordinates of the centers of the ROIs, alongwith the
t-statistic thresholds used to restrict the ROIs to only active voxels. Fig. 2
show the locations and overlap of ROIs for M1 and cerebellum,
respectively. Although these ROIs were defined using t-statistic
maps for each individual with the contrast Move vs. Rest, the overlap
map is in good alignment with the activation patterns seen at the
group level.

HRF estimation

Prior to estimating the shape of the movement-related hemody-
namic response in our two ROIs, we normalized the BOLD time series
by dividing the raw BOLD signal at each time point and at each voxel
by the mean raw BOLD signal for that voxel in that run. We plotted
the movement-evoked percent signal change, both the overall group
average (thick black line, Fig. 2D&E) and average across two task runs
for each individual (thin lines, one color per individual, Fig. 2D&E).
The largest movement-evoked increase in the BOLD signal was 0.55%
in M1, and 0.39% in the cerebellum. These magnitudes are well within
the expected range of evoked BOLD responses at 3 T. There was
variation across participants in both the amplitude and latency of
the peak. This variation across participants contributed to (but did
not wholly account for) the emergence of a double peak in the
cerebellum.

The HRF within each M1 and cerebellar ROI was estimated using
eight separate GLM analyses: the uncorrected model and the seven
corrected models (GLMs that included HR, RV, and phase alone, all
pairwise combinations, and the Fully Corrected model that includes all
three variables). The mean parameter estimates at each lag in the
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Fig. 4. Effect of physiological andmovement regressors across thewhole brain. Group-level F-statisticmaps indicate where HR (A), RV (B), Phase (C), andmovement (D) regressors had a
positive or negative effect at any lag (the effect of physiological regressors represents the additional variance beyondmovement regressors). Thesemapswere created using a group-level
F-contrast over the parameter estimates for all regressors within each set of regressors (12 lags of HR, RV, or movement onsets or 8 phase regressors). Color bar at right indicates group-
level F-statistic. Midsagittal view of slices for all panels is shown on the right. All maps are thresholded at p b .001, uncorrected. Color bars indicate threshold for each variable based on
associated degrees of freedom.
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Move vs. Rest contrast are plotted in Fig. 5. These plots represent the es-
timated hemodynamic response to reaching movements in each ROI.
Because differences among the models were minimal, we only show
the results from the Uncorrected and Fully Corrected models, although
all models were included in the statistical tests.

The HRFs for each of the Corrected models were compared to the
Uncorrected model using seven 2-way repeated-measures ANOVAs,
with factors Time (12 TRs, beginningwithmovement cue onset and ex-
tending for 22 s) and Model (Corrected vs. Uncorrected model), for a
total of seven ANOVAs.

All ANOVAs revealed a significant main effect of time, as is expected
when plotting a robust HRF. While the effect of Model was not
significant for any of the ANOVAs, all comparisons in which the
Corrected model included HR as a regressor yielded a significant inter-
action effect for both the M1 and cerebellar ROIs (p b .0001 in all cases
where HR was included, 4 of 7 models; see Table 2).

Including HR resulted in a slightly lower peak in the cerebellar HRF
(Fig. 5B). A similar pattern was observed for M1, with the addition of
a more pronounced reduction in the post-stimulus undershoot in com-
parison with the cerebellar HRF. We compared individual time points
between the corrected and uncorrected models using post hoc paired
t-tests, using Bonferroni adjusted alpha levels of p b .004 per test (.05/
12). No time point reached significance at this threshold. As Bonferroni
correction is conservative, however, we note that only a single time
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Fig. 5.Deconvolved hemodynamic response functions (HRFs). HRFs deconvolved from each participant's ROI for the Uncorrected (gray) and Fully Corrected (black)models inM1 (A) and
Cerebellum (B). Bottom row of each panel shows the mean HRF across all participants. Axes and legends for individual plots are as labeled in group plots. In individual plots, error bars
represent the standard error of the mean across voxels; in group plot, error bars are within-participant (Loftus) error bars, given that our statistical test of interest (i.e., uncorrected vs.
corrected) is conducted within-participant.
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point contained a significant difference prior to correction, the fifth time
point in the cerebellum (HR model: t(20) = 2.1731, p b .05;
HR + phase: t(20) = 2.1214, p b .05; HR + RV + phase: t(20) =
2.4560, p b .05).

Percent variance explained and model comparisons

We next asked whether the inclusion of task-dependent effects on
the physiological variables improved the fit of our eight GLMs. Table 3
reports the percent variance explained by each of the models, listing
the mean, standard error of the mean, minimum, and maximum across
participants. For all models, the percent variance explained was greater
in M1 compared to the cerebellum. This result is not surprising given
that the responses in M1 tended to have higher peaks, were more
consistent across participants, and bear a stronger resemblance to the
canonical HRF. Inspection of whole-brain maps of temporal signal-to-
noise ratio (tSNR) revealed slightly lower signal quality in the cerebel-
lum, which may also have influenced our estimates. It is also possible
that our ROI selection procedure resulted in greater heterogeneity of re-
sponses across voxels in the cerebellar ROI since this ROI could extend
beyond the “classic” cerebellar motor region of the anterior lobe.

For each region, the inclusion of a new set of regressors (individually
or in combination) yielded an increase of variance explained between
6.9 and 12.3%. The addition of HR and RV regressors tended to improve
model fits more than phase regressors. Fig. 6 illustrates, in the percent-
ages adjacent to each arrow, the mean additional percent variance ex-
plained by the addition of each set of regressors. Overall, for M1, the
increase for the Fully Corrected model compared to the Uncorrected



Table 3
Percent variance explained.
Mean percent variance explained, standard error of the mean, and minima and maxima
values for percent variance explained. Top is for M1 ROI and bottom is for cerebellar ROI.

Model M1 mean M1 sem M1 min M1 max

Uncorrected 24.6 1.8 12.6 34.7
RV 36.9 1.4 31.5 47.1
HR 36.1 1.8 27.6 45.0
Phase 32.5 1.9 19.4 41.4
RV + HR 46.6 1.4 40.2 54.8
RV + phase 43.7 1.3 36.1 51.1
HR + phase 43.3 1.7 34.2 50.9
RV + HR + phase 52.6 1.2 45.7 58.6

Model Ce mean Ce sem Ce min Ce max
Uncorrected 15.8 1.3 10.2 23.4
RV 26.3 1.8 20.3 38.3
HR 26.2 1.8 19.9 36.0
Phase 23.1 1.3 16.3 31.3
RV + HR 26.2 1.9 29.2 45.9
RV + phase 33.3 1.7 26.7 43.3
HR + phase 33.2 1.8 25.8 42.5
RV + HR + phase 41.7 1.9 35.2 51.3
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model ranged from 23.9% to 37.5% across participants. The comparable
range for the cerebellum was 22.8% to 31.1%.

A nested series of pairwise F-testswere used to test, in the individual
data sets, the impact of adding each set of physiological regressors. For
each F-test, a given model was compared to a subordinate, reduced
model from which one set of regressors had been removed (see
Eq. (2)). This allowed quantification of the improvement in model fit
due to the addition of a given variable as defined by a set of regressors.
Fig. 6 presents, in the number beneath the additional percent variance
explained by each correction, the number of participants for whom
that correction resulted in a significant improvement in model fit. In
M1, addingHRand RV regressors significantly improved thefit for ama-
jority of participants, while adding phase did not. In the cerebellum, the
number of participants with significantly improved fit was lower, and
there were no substantial differences when adding HR, RV, or phase
regressors.

Given the similarity of the mean additional percent variance ex-
plained in M1 and the cerebellum, the disparity in number of partici-
pants with significantly improved fit is somewhat surprising. Relaxing
the criterion to p b .10 adds 1–2 participants atmost levels of correction
(as diagrammed in Fig. 6); however, the disparity between M1 and the
cerebellum is maintained. Paired t-tests on the additional percent vari-
ance explained for each correction were used to directly compare the
A

Fig. 6. Model comparisons: Increase in percent variance explained and nested F-tests. Percent
(percent variance explained in the full model minus that of the reduced model, as in Eq. (2)
participants for whom each correction resulted in a significant improvement in model fit (p b 0
relative efficacy of these corrections in M1 and the cerebellum. No
significant differences were found for any of the nine corrections
(pN 0.15 for all). Thus,while the effects tended to reach statistical signif-
icance for individual participants in M1 only, the overall magnitude and
pattern of improvements was quite similar for both M1 and the
cerebellum.

Discussion

We examined how task-related changes in HR and RV influence the
BOLD response and, as such, might impact the interpretation of neural
activity. At the group level, reliable task-related fluctuations in HR re-
sulted in subtle alterations in the shape of the HRF, while more variable,
and nonsignificant, fluctuations in RV did not affect the shape of the
HRF. The inclusion of these physiological regressors accounted for a sig-
nificantly larger percent of the variance than analyses involving only the
movement regressors, with the effect of HR and RV regressors produc-
ing roughly similar improvements in the individual data sets. This im-
provement in model fit was greater than that observed with
regressors that allowed for phase-based corrections. The improvements
in model fit were greater in M1 than in the cerebellum.

Improvements in model fit obtained using nuisance variable regression

fMRI studies that seek to account for physiological fluctuations typ-
ically include HR and RV as nuisance regressors in the GLM. Indeed, in
analyses of functional connectivity, these physiological corrections are
increasingly commonplace (e.g. Birn et al., 2008, 2009; Chang et al.,
2013; Khalili-Mahani et al., 2013). The benefits of nuisance variable re-
gression for task-related fMRI, however, have not been widely consid-
ered (but see van ‘t Ent et al., 2014). Schlerf et al. (2012) provide an
extreme example inwhich the failure to account for task-related chang-
es in HR on fMRI responses led to radically different interpretation than
that obtained when HR changes were included in a GLM.

The current study used a nested approached that looked at a set of
physiological variables, either modeled individually or in combination
within the GLMs. At the group level, improvements in model fit were
assessed using the mean additional variance explained. With the fully
corrected model, the mean percent variance explained increased from
24.6% to 52.6% in M1 and from 15.8% to 41.7% in the cerebellum
(Table 3). In both regions, inclusion of RV, HR, and phase regressors in
isolation resulted in mean improvements of around 10% (Fig. 6). These
increases are considerably higher than in one previous resting state
study in which the inclusion of cardiac rate regressors only explained
an additional 1% of the variance (Shmueli et al., 2007). This difference
B

age values represent the mean additional percent variance explained by each correction
) for M1 (A) and Cerebellum (B) ROIs. Values in parentheses are the number of the 11
.05), accounting for the reduction in the degrees of freedom due to additional regressors.
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is likely due to the restricted nature of our task- and ROI-based ap-
proach. Indeed, in our own previous study, the inclusion of HR regres-
sors only accounted for 3% of BOLD variance (Schlerf et al., 2012),
while the magnitude of the current correction effect is similar to that
of Chang et al. (2009) who restricted their analysis to voxels where a
significant proportion of the variance was explained by physiological
regressors.

At the individual level, GLMs that included HR and RV as nuisance
regressors resulted in improvements in a greater number of data sets
than did those that included phase. Movement-evoked fluctuations in
these variables did not predict their utility as nuisance regressors. Spe-
cifically, significant improvements in model fit occurred in the absence
of significant task-related fluctuations for both variables and, in one in-
stance (see s10, Fig. 3A), accounting for changes in HR did not predict an
improvement in model fit despite a task-related fluctuation in HR.

Including cardiac and respiratory phases, as implemented using
RETROICOR and othermethods, has been shown to provide a significant
improvement over uncorrected models (Hu et al., 1995; Glover et al.,
2000). The rate of cardiac and respiratory events are independent re-
gressors that may account for additional variance. By using a set of
nested GLM analyses, we were able to determine whether additional
sets of regressors accounted for redundant variance that could equally
well be attributed to alternative regressors. Our analysis confirmed
that these regressors linearly improve the model fit, suggesting that
they do in fact manifest differently in the BOLD signal. For instance,
tracking the influence across the levels of theM1 tree in Fig. 6, the inclu-
sion of HR accounts about 10% additional variance when added to the
uncorrected model, to a model that already includes phase, or to a
model that already includes both RV and phase.

Prior studies have examined the redundancy of information in phys-
iological regressors, and these have led to the recommendation that the
regressors be consolidated, either by averaging correlated regressors or
by replacing sets of shifted timeseries with single regressors convolved
with an appropriate response function (respiratory, Birn et al., 2008, and
cardiac, Chang et al., 2009). Our shape-agnostic FIR approach, with 11
additional regressors probing the lagging influence of these processes,
reduced the potential impact of regional and temporal variation on
analyses looking at the relationship between physiological variables
and the BOLD signal. However, our approach does entail a greater
reduction in the degrees of freedom, and this may have increased the
prevalence of null results at the individual level. Evaluating the im-
provement of this approach over a canonical response function is left
for future studies.

Overall, the inclusion of thephysiological regressors at the individual
level improved the fit more reliably in M1 than in the cerebellum.
Adding HR to the GLM produced a significant improvement in fit in
the cerebellar ROI for only three participants (compared to nine for
M1), a result that was unexpected given the cerebellar findings of
Schlerf et al. (2012). There are, however, a number of noteworthydiffer-
ences between the studies. First, in the present study, the temporal
signal-to-noise ratio (tSNR) was higher in M1 than in the cerebellum,
and this may have limited the extent of improvement that was possible
in the cerebellum. Second, our movement-related ROIs were comprised
predominantly of voxels in lobules I–V, whereas the error-related activ-
ity in the previous study was predominantly located in lobule VI. There
are likely notable differences in functionality between these regions, a
point underscored by resting state connectivity data showing differen-
tially connectivity patterns; for example, lobules I–V show greater con-
nectivity with M1 whereas lobule VI shows greater connectivity with
premotor and prefrontal cortex (Krienen and Buckner, 2009). Third,
themovement task used in the current study did not employ visual tar-
gets or involve visual feedback, and as such had reduced cognitive de-
mands. Finally, the movement vs. rest contrast in the current study
typically produces more reliable activations in the cerebellum (and
M1) than the errors vs. correct trials contrast examined by Schlerf
et al. (2012). Accounting for a confounding factor such as HR may be
more important for statistical contrasts that produce less reliable
results.

Task-related changes in physiological variables and their impact on the
hemodynamic response

Using a simplemovement task in a slow event-related paradigm,we
observed a robust task-related increase in HR of about 1%. While the
increase in HR (peaking around 4 s) occurred slightly faster than the ca-
nonical hemodynamic response (which peaks at around 6 s), the over-
lap in the time courses of these two responses is considerable and an
issue of concern. Since each beat of the heart delivers oxygenatedhemo-
globin to the brain, and the BOLD signal is ameasurement of the ratio of
deoxygenated and oxygenated hemoglobin, changes in HR will modu-
late the BOLD signal. As such, HR-induced changes in the BOLD signal
may be misattributed to neural activity. That is, task-related changes
in HR could, at least in some cases, be so closely linked to the task pa-
rameters as to be indistinguishable from true neural changes. Given
the relative paucity of studies examining cerebellar hemodynamic re-
sponses, combined with the previously observed susceptibility of the
cerebellum to physiological changes (Schlerf et al., 2012), we sought
to pinpoint sources of variability in the shape of the cerebellar HRF, as
well as compare this to that observed in the cortex.

Many fMRI analysis packages, by default, convolve task regressors
with a canonical HRF to model event-related responses. This may pro-
duce an inappropriate model of the data for some subjects, resulting
in poor fit (for review, see Handwerker et al., 2012). Handwerker et al.
(2004) provided an example where a 1 s error in an individual-
specific HRF reduced the explained variance by 10%, and at 2 s error
the explained variance was reduced by 38%. Given that the HRF varies
greatly across individuals, it has been recommended that a separate
task run be included to obtain individual-specific HRFs (Aguirre et al.,
1998; D'Esposito et al., 1999; Handwerker et al., 2004). While this ap-
proach can account for relatively large inter-individual differences,
smaller differences may remain in the shape of the HRF for different
brain regions.Moreover, these regional differencesmay be differentially
influenced by physiological factors depending on their proximity to vas-
culature and sulci (Birn et al., 2006, 2008).

Our analyses of the deconvolved hemodynamic response revealed
subtle effects from the physiological corrections. The deconvolved HRFs
in both the M1 and cerebellar ROIs were similar at the group level, al-
though the inclusion of physiological regressors in the GLM yielded het-
erogeneous changes in the deconvolved HRFs of individual participants.
Given the variation in the HRF across individuals, brain regions, and task
parameters (Handwerker et al., 2004; Birn et al., 2008), as well as the
spatial heterogeneity of susceptibility to physiological influences across
the brain (Birn et al., 2008; Chang et al., 2009), differences caused by
task-related physiological covariates are likely to beminor and irrelevant
to the decision to use the canonical HRF to model task responses. How-
ever, the current results (Table 2) point to an important role for HR cor-
rection in accurately estimating the hemodynamic response, particularly
when a task-related change in HR is present.

In the group data, the HR correction lowered the peak of the estimat-
ed HRF in both M1 and the cerebellum. The lower peaks indicate that
some of the variance attributed to movement-related neural activity
(via theMove vs. Rest contrast) was better accounted for by the HR cor-
rection. This observation is in accord with the known impact of HR
changes on the BOLD signal (Shmueli et al., 2007). This relationship
has been described by a cardiac response function (CRF), deconvolved
from data recorded while subjects were lying at rest in the scanner.
With a deconvolved CRF, HR is positively correlated with the BOLD sig-
nal at lags of around 4 s and negatively at lags around 12 s (Chang et al.,
2009). The initial positive correlation, combinedwith the increase in HR
induced by our movement task, offers an explanation for the reduced
HRF peaks following addition of HR regressors (Fig. 5): Variance that
had previously been misattributed to neural responses was re-
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allocated to physiological variables, decreasing the parameter estimates
for the movement regressors at these lags.

The generalizability of estimatedHRFs can be improved through reg-
ularization (Casanova et al., 2008). Here, we chose to focus on the un-
constrained HRFs, estimated from the FIR expansion model. If our
estimated HRFs were to be used as basis functions with which to con-
volve task regressors in a separate GLM, regularization would be desir-
able. However, wewere primarily interested inwhether the inclusion of
physiological variables in a GLMwould result in a vastly diminishedHRF
peak due to the association of variance from these physiological vari-
ables to task variables. Given the small change in HRF shape produced
by our corrections (Fig. 5), we simply reiterate the cautious recommen-
dations of Aguirre et al. (1998) and Handwerker et al. (2004), and sug-
gest that region- and subject-specific HRFs used as basis functions be
regularized where doubt remains as to the accuracy of the deconvolved
transfer function.

Because of the involuntary nature of the autonomic process, proper
experimental control of HR is extremely difficult (for examples of
experimental control of respiration, see Birn et al., 2006, 2008). Howev-
er, the discrete nature of heartbeats has the advantage of reducing the
number of possible sources of variance in the BOLD signal compared
to changes in either the rate or depth of respiration. Importantly, a
movement task such as that employed here can be a reliable modulator
of HR. Indeed, a movement task might be used to drive a change in HR
should an experimenter wish to explore individual physiological
response functions. Convolving physiological regressors with this
function avoids the loss of freedom imposed by an exhaustive lagged
approach. Furthermore, modeling individual-specific changes in HR
due to movements and other events could account for unwanted
sources of variance across a range of tasks. Other cognitively or
emotionally demanding tasks are also known to influence HR, and, as
such, the BOLD response would likely be influenced by the inclusion
of HR regressors in a GLM.

RVwas not reliablymodulated during our simplemovement task. The
lack of an effect of RV regressors on the shape of the hemodynamic re-
sponse is consistent with our previous study involving an event-related
analysis of movement errors (Schlerf et al., 2012). Naturally-occurring
changes in respiration may result from some combination of the depth,
duration, and frequency of breaths, necessitating tighter experimental
control through cued breathing tasks in order to independently assess
the sources of variance (Birn et al., 2006, 2008, 2009). However, it is un-
clear to what extent cued changes in respiration mimic naturally-
occurring changes in respiration (Birn et al., 2008). Further research on
the impact of RV on fMRI signals is needed, given the lack of effect of
RV on the HRF but comparable efficacy of HR and RV in nuisance variable
regression in the current study (Table 3, Fig. 6).

Conclusions

Sources of variance in fMRI studies that are unaccounted for may in-
fluence the shape of the hemodynamic response function (HRF) and/or
model fit. These unmodeled variables may be particularly problematic
when they are correlated with task factors. We modeled a set of physi-
ological variables as nuisance regressors to examine their impact on the
deconvolved hemodynamic response and on model fit. Regressing out
task-related changes in heart rate (HR) resulted in subtle changes in
the HRF in both the cerebellum and M1, with or without the presence
of respiratory variation (RV) and phase regressors. These results indi-
cate that the BOLD response may be more accurately estimated by in-
cluding HR in a GLM even when changes in HR are correlated with
changes in the contrast of interest. As assessed by model fit at the
group level, the inclusion of both RV and HR regressors resulted in sig-
nificant improvements inmodel fit exceeding those of phase regressors,
further underscoring the need to account for both task-related and task-
independent changes in the rate of physiological processes when infer-
ring patterns of neural activity from fMRI time series.
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