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Abstract

■ In perceptual decision-making tasks, people balance the
speed and accuracy with which they make their decisions by
modulating a response threshold. Neuroimaging studies sug-
gest that this speed–accuracy tradeoff is implemented in a
corticobasal ganglia network that includes an important con-
tribution from the pre-SMA. To test this hypothesis, we used
anodal transcranial direct current stimulation (tDCS) to modu-
late neural activity in pre-SMA while participants performed a
simple perceptual decision-making task. Participants viewed a
pattern of moving dots and judged the direction of the global
motion. In separate trials, they were cued to either respond

quickly or accurately. We used the diffusion decision model
to estimate the response threshold parameter, comparing con-
ditions in which participants received sham or anodal tDCS. In
three independent experiments, we failed to observe an influence
of tDCS on the response threshold. Additional, exploratory anal-
yses showed no influence of tDCS on the duration of nondecision
processes or on the efficiency of information processing. Taken
together, these findings provide a cautionary note, either con-
cerning the causal role of pre-SMA in decision-making or on the
utility of tDCS for modifying response caution in decision-making
tasks. ■

INTRODUCTION

The speed–accuracy tradeoff (SAT) refers to how people
balance the speed with which they respond and the
accuracy of those responses. For example, people can
respond faster by reducing the amount of information
that is integrated before a response is initiated, that is,
lower a response threshold (Bogacz, Wagenmakers,
Forstmann, & Nieuwenhuis, 2010; Ratcliff, 1978; Wickelgren,
1977). This tradeoff has been modeled with evidence accu-
mulation models such as the diffusion decision model
(DDM; Forstmann, Ratcliff, & Wagenmakers, 2015; Ratcliff
& Rouder, 1998). These models are used to predict accu-
racy levels and RT distributions as well as to quantify inter-
and intraindividual variability.
The neural mechanisms underlying SAT have been

explored in neuroimaging studies, identifying regions
where activity is modulated as a function of variation in
the response threshold. Activity in the pre-SMA, ACC,
and striatum has been related to individual differences in
response thresholds (Mansfield, Karayanidis, Jamadar,
Heathcote, & Forstmann, 2011; Forstmann et al., 2008), as

well as to trial-to-trial variability in these thresholds (Boehm,
van Maanen, Forstmann, & van Rijn, 2014; van Maanen
et al., 2011). Activity differences in dorsolateral pFC have
also been related to measures of response caution (Ivanoff,
Branning, & Marois, 2008; van Veen, Krug, & Carter, 2008).

These findings are in accord with neurocomputational
models of the SAT in which response thresholds are
modulated by increasing or decreasing baseline activity in
integrator neurons in the pre-SMA or in striatum (Bogacz
et al., 2010). For example, an increase in baseline firing
wouldmean that there would have to be a relatively smaller
increase from stimulus-induced activity to reach a fixed
threshold. Different hypotheses have been forward on
the exact role of the pre-SMA in this modulation. One
hypothesis is that neural activity in the pre-SMA reflects
this increased baseline integrator activity itself. An alter-
native, albeit, related hypothesis is that the pre-SMA mod-
ulates the baseline activity of integrator neurons that are
in downstream areas such as the striatum, but pre-SMA
neurons themselves do not integrate the evidence coming
from perceptual areas (Gold & Shadlen, 2007).

The main goal of this study was to use transcranial di-
rect current stimulation (tDCS; Nitsche & Paulus, 2011)
to modulate activity in the pre-SMA. Prior studies have
shown that anodal tDCS can modulate performance on
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tasks associated with pre-SMA such as the stop signal
task. Specifically, after anodal stimulation, participants
an ongoing response, without affecting RTs to the “go”
stimuli needed less time to inhibit an ongoing response,
without affecting RTs to the “go” stimuli (Liang et al.,
2014; Hayduk-Costa, Drummond, & Carlsen, 2013; Kwon
& Kwon, 2013; Hsu et al., 2011).

Here we turned to a different task domain associated
with pre-SMA function, asking whether tDCS targeted at
this area would modulate performance on a perceptual
discrimination task. In particular, we examined the im-
pact of anodal tDCS on how people modify their be-
havior when instructions emphasize speed or accuracy.
In deriving our tDCS predictions, we considered two
mutually exclusive hypotheses concerning pre-SMA func-
tion. The first hypothesis is that pre-SMA activity contains
cortical integrator neurons that represent the integrated
evidence for one response or the other (Bogacz et al.,
2010; Gold & Shadlen, 2007). This hypothesis would pre-
dict that tDCS should modulate the response threshold
on both speed- and accuracy-stressed trials.

The second hypothesis is that pre-SMA modulates ac-
tivity in downstream integrator neurons. This hypothesis
is supported by evidence showing that pre-SMA activity
only predicts variability in response threshold during
speed-stressed trials. One could infer from this that the
accuracy-stressed regime is the default setting, with pre-
SMA activity being relevant when speed is stressed (van
Maanen et al., 2011). By this “downstream control” hypoth-
esis, we would predict that only speed-stressed trials
should be influenced by tDCS.

Of course, the validation of the two hypotheses has as
a “sine qua non” that tDCS alter the cortical excitability of
pre-SMA. In the last 2 years, different review papers and
recent meta-analyses have raised questions concerning the
reliability of tDCS as a tool to alter behavior in decision-
making tasks (Horvath, Forte, & Carter, 2014, 2015; Nitsche,
Bikson, & Bestmann, 2015; Strube, Bunse, Malchow, &
Hasan, 2015; Kim et al., 2014; López-Alonso, Cheeran,
Río-Rodríguez, & Fernández-del-Olmo, 2014; Tremblay
et al., 2014; Wiethoff, Hamada, & Rothwell, 2014). Our
study provides an opportunity to assess the efficacy of
tDCS targeted at pre-SMA. As described below, an initial
experiment failed to show an effect of pre-SMA anodal
tDCS on performance in the motion detection task. We
then went on to conduct two additional experiments in
other labs, with the idea that this would provide an op-
portunity to assess the replicability of these null results.

METHODS

Participants

A total of 44 participants took part in three experiments,
with the testing done at three different locations: The
University of California, Berkeley (n = 15, mean age =
23.9, SD = 7.8; 8 women), the University of Amsterdam

(n = 15, mean age = 25.4, SD = 6.8; 10 women), and
Leiden University (n = 14, mean age = 22.2, SD = 3.0;
10 women). On the basis of a prescreening survey, none
of the participants presented any contraindications for
tDCS. The participants gave informed consent under
protocols that were approved by the institutional review
boards at the University of California, the University of
Amsterdam, and Leiden University. All of the protocols
were in accord with The Code of Ethics of the World
Medical Association (Declaration of Helsinki).

Experimental Task

Participants performed a cued version of a motion discrim-
ination task (Britten, Shadlen, Newsome, & Movshon,
1992). The stimuli were displayed on a computer monitor,
positioned approximately 60 cm in front of the partici-
pant. Each trial started with the appearance of a fixation
cross for 500 msec. This was followed by a text cue pre-
sented at the center of the display. The cue indicated that,
on the forthcoming trial, the participant was to either
emphasize speed (“FAST”) or accuracy (“ACCURATE”). After
500 msec, the cue was replaced by a cloud of 328 white
dots (3 × 3 pixels each) that moved on a black back-
ground. The cloud spanned a diameter of approximately
5°, resulting in a density of 16.7 dots/deg2. The display
refreshed at 60 Hz, and between frames each dot was
displaced by one pixel to create apparent motion. A vari-
able percentage of dots coherently moved to the left or
right (see below); the remaining dots moved in a random
direction. The coherence of the stimulus was defined as
the probability that a dot would move in the designated
(left or right) direction; for example, 50% coherence
means that, during each frame, each dot has a probability
of 50% to move in the main direction (Boehm et al., 2014;
Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann,
2012; van Maanen et al., 2011; Ratcliff & McKoon, 2008;
Palmer, Huk, & Shadlen, 2005; Gold & Shadlen, 2003;
Britten et al., 1992; Newsome & Paré, 1988). The par-
ticipant indicated the perceived direction of the cloud,
using the left and right index fingers to press on the z- and
m-keys of the computer keyboard, respectively. The
dots disappeared when a response was detected or after
2000 msec (no response trials). Following the response
(and feedback—see below), a 1000-msec intertrial interval
preceded the onset of the fixation cross for the next trial.

Experimental Design

Each participant was tested in two different sessions. In
the first session, the participant first performed a practice
block of 15 trials to become familiar with the task. The
participant was then tested on a 200-trial calibration
block, designed to identify the coherence level at which,
with no instructions concerning speed or accuracy, the
participant would be correct on 80% of the trials. This
criterion was selected because it provided a target error
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at which we should be able to robustly fit the DDM
(Ratcliff & Rouder, 1998). In the calibration block, the
level of coherence could be 0%, 20%, 40%, or 80% (40 trials/
level, 20 with motion to left and 20 with motion to right).
Feedback was provided after every trial in the form of a
green (correct) or red (incorrect) circle that appeared in
the direction of the response (Mulder et al., 2012). On
the basis of the accuracy and RT data from this block, the
proportional rate diffusion model (Mulder et al., 2012;
Gold & Shadlen, 2007; Palmer et al., 2005) was used to
estimate the motion coherence that corresponded to
80% accuracy for each participant.
This coherence level was then fixed at this value for all

600 trials of the main experimental block (Boehm et al.,
2014; Mulder et al., 2012). Half of these trials were speed-
stressed trials and half were accuracy-stressed trials, and
within each the direction of motion was leftward on half
of the trials and rightward on the other half of the trials.
Note that the proportional rate diffusion model predicts a
mean expected RT for a given coherence level. If the
actual RT was slower than this criterion RT on speed-
stressed trials, participants received a 500-msec feedback
that they were “Too Slow.” This procedure assured a
high-speed stress on speed trials. If the participants re-
sponded within the deadline, during both the speed-
and accuracy-stressed conditions, they would receive, for
500 msec, visual feedback indicating if the response was
correct or incorrect.
In the second session, participants only completed the

15-trial warm-up block before the experimental block;
the calibration phase was not repeated and the coher-
ence level was set to the same level as in the first session.
In each session, tDCS was applied before the experi-

mental block. Anodal tDCS was used in one session,
and sham stimulation was used in the other. The order
of the sessions was counterbalanced, and the two ses-
sions were separated by at least 24 hr. In prior studies,
tDCS is sometimes applied during task performance (like
Spieser, van den Wildenberg, Hasbroucq, Ridderinkhof,
& Burle, 2015; Antal et al., 2004) and sometimes applied
before the task begins (similar to Liang et al., 2014; Hayduk-
Costa et al., 2013; Kwon & Kwon, 2013; Hsu et al., 2011).
We opted to use the latter, because we did not want to
add an additional experimental factor to the design (online
vs. offline stimulation) that might have complicated the
modeling analyses.
tDCS was applied at Berkeley using an iBox Dynatron

stimulator (Dynatronics, Salt Lake City, UT). For the
Amsterdam and Leiden sites, a DC Brain Stimulator Plus
(NeuroConn, Ilmenau, Germany) system was used. At all
three sites, two rubber electrodes (5 × 7 cm) were
applied to the scalp, with the longer dimension of the
electrode aligned in the lateral direction. The anodal elec-
trode was placed over FCZ, the target location for stimu-
lation of the pre-SMA (Spieser et al., 2015; Boehm et al.,
2014; Liang et al., 2014; Hayduk-Costa et al., 2013; Kwon &
Kwon, 2013; Hsu et al., 2011). The return electrode was

placed over the contralateral supraorbital area (Hayduk-
Costa et al., 2013; Kwon & Kwon, 2013). In the anodal ses-
sion, tDCS was applied for 13 min. The amplitude strength
was 1 mA, with a linear fade-in/fade-out of 15 sec. In the
sham condition, the stimulator was maintained in place
for 13 min, but the stimulation was ramped down after
30 sec, a duration that has been found not to induce
any persistent modulation of neural function (Nitsche &
Paulus, 2000).

Immediately after stimulation, the montage was re-
moved and the participant started the experimental block.
The 600 trials were completed within approximately 45min.
Importantly, the physiological effects of tDCS have been
found to extend approximately 60 min following 13 min
of stimulation (Nitsche & Paulus, 2001). Thus, modulation
of neural activity by anodal tDCS should extend through-
out the entire task.

Fitting of DDM

The full DDM (Ratcliff & Tuerlinckx, 2002) was fit using the
partial differential equation method and the Kolmogorov
Smirnov statistic, as implemented in the fast-dm package
(Voss & Voss, 2007). This package has been found to
provide robust fitting routines for the DDM (Ratcliff &
Childers, 2015). Because there were 300 trials per ex-
perimental cell, there was ample data (Voss & Voss, 2007)
to independently fit the data in the four experimental cells
(Speed × Accuracy and Sham × Anodal). Six of the seven
parameters of the full DDM were estimated separately for
all four conditions (drift rate v, threshold b, nondecision
time t0, across-trial variability in drift rate sv, across-trial
variability in starting point sz, as well as across-trial vari-
ability in nondecision time st0).

The seventh parameter, the bias parameter z, was fixed
at 0.5, based on the assumption that participants were
not biased toward the left/right bound in the present
experiment. This assumption was justified by the obser-
vation that when we grouped correct responses (left
responses to left stimuli with right responses to stimuli)
and error responses together, there was no left/right bias
(the proportion of left responses was not significantly
different from 0.5 in any of the data sets; all ps > .10).

The quality of the DDM model fits was visually con-
firmed by plotting empirical RT quantiles against pre-
dicted RT quantiles for correct and incorrect trials (see
also Ratcliff, Thapar, & McKoon, 2010).

Statistical Testing

We used a series of 2 (Stimulation: tDCS vs. Sham) × 2
(Cue: Speed vs. Accuracy) repeated-measures ANOVAs,
using dependent variables of mean accuracy, median
RT, and response threshold (parameter b, estimated in
the DDM). Accuracy scores were transformed using an
arc-sine transformation to make them approximately nor-
mally distributed (Winer, Brown, & Michels, 1971).
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We corrected the resulting p values for multiple com-
parisons, using Bonferroni correction. We multiplied the
p values by the number of planned statistical tests (9) and
restricted their range to (0, 1]. When the Bonferroni-
corrected p value was not significant at an alpha level
of .05, but the uncorrected p value was significant, we
report both values, recognizing that the choice here
impacts the probability of Type I and Type II errors.
Although the correction is the standard in current re-
search, we also felt it was important to present both cor-
rected and uncorrected p values to avoid a procedure
that might bias the results to support the null hypothesis.

To test the amount of evidence in favor of the null
hypothesis, we also conducted the ANOVAs within a
Bayesian framework, using the default Jeffreys–Zellner–
Siow prior (Morey & Rouder, 2015; Rouder, Morey,
Speckman, & Province, 2012). Variability across partici-
pants was modeled in the ANOVA as a random factor.
The Bayes factor for the effect of an experimental factor
in the model was computed as the ratio of the likelihood
of the full model versus a model in which this factor
was omitted. This ratio was determined using 500,000
MCMC samples. Because the motivation behind the data
collection is irrelevant in Bayesian statistics (Wagenmakers,
2007), we performed the Bayesian ANOVA over all par-
ticipants in all data sets at the same time. In these analyses,
the location of data collection was entered into the model
as a random factor.

All statistical analyses were done in an IPython Note-
book (Perez & Granger, 2007) environment using an in-
house Python interface for fast-dm, R (version 3.2.0; R
Core Team, 2015), and the BayesFactor package (Morey
& Rouder, 2015). All analysis code and original data can
be found online on the first author’s Web site.

RESULTS

RTs

Median RTs are shown in Figure 1. In all three experi-
ments, RTs in speed-stressed trials were significantly
shorter than RTs in accuracy-stressed trials. Overall, the
mean RT was 486 msec in the speed trials and 619 msec

in the accuracy trials (Berkeley: F(1, 42) = 59.4, p< .001;
Amsterdam: F(1, 42) = 64.5, p < .001; Leiden: F(1, 39) =
53.4, p < .001). The Bayesian analyses also indicated that
participants responded to the cues in the instructed
manner, with decisive evidence in favor of a model in-
cluding the SAT effect as compared with a model without
this factor (Berkeley: BFSAT = 4881; Amsterdam: BFSAT =
4518; Leiden: BFSAT = 4718; all data sets combined:
BFSAT = 1.08e13).
In the frequentist ANOVA, RTs were not significantly

affected by anodal tDCS (Berkeley: F(1, 42) = 1.97,
p = 1.0; Amsterdam: F(1, 42) = 0.50, p = 1.0; Leiden:
F(1, 39) = 0.24, p = 1.0). Similarly, the Bayesian analyses
showed evidence in favor of a model not including tDCS
as a factor (Berkeley: BFtdcs = 0.35; Amsterdam: BFtdcs =
0.36; Leiden: BFtdcs = 0.39 for all data sets combined:
BFtdcs = 0.16).
There were no interaction effects between instruction

and stimulation, indicating that the RT advantage on
speed trials compared with accuracy trials was similar
for the anodal and sham tDCS conditions. Consistent
with the results of these ANOVAs, the Bayesian analyses
also favored a model that did not include the interaction
term (Berkeley: F(1, 42) = 0.44, p= 1.0; Amsterdam: F(1,
42) = 0.020, p = 1.0; Leiden: F(1, 39) = 0.032, p = 1.0;
Berkeley: BFtdcs × SAT = 0.38; Amsterdam: BFtdcs × SAT =
0.36; Leiden: BFtdcs × SAT = 0.33; all data sets combined:
BFtdcs × SAT = 0.22).

Accuracy

The speed-stressed trials showed consistently lower accu-
racies than the accuracy-stressed trials, falling on average
from 78% to 72% (see Figure 2 for individual data sets).
In all data sets, this difference was significant (Berkeley:
F(1, 42) = 14.2, p = .005; Amsterdam: F(1, 42) = 21.4,
p < .001; Leiden: F(1, 39) = 20.5, p < .001), and the
Bayesian analyses showed substantial evidence for a
model including the main effect of Instruction, an effect
seen most clearly when the three data sets were combined
(BFSAT = 0.92 for the Berkeley data set; BFSAT = 1.24 for
the Amsterdam data set; BFSAT = 3.32 for the Leiden data
set; BFSAT = 57.3 over all data sets).

Figure 1. Median RTs for different data sets and experimental conditions. Error bars are bootstrapped standard errors (67% confidence interval).
In all three data sets, RTs were significantly lower for the Speed condition, but there was no significant effect of tDCS stimulation.
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After Bonferroni correction, there was no effect of
tDCS on accuracy for all three data sets (Berkeley: F(1,
42) = 4.48, p = .362; Amsterdam: F(1, 42) = 0.12, p =
1.0; Leiden: F(1, 39) = 0.42, p = 1.0). However, without
the Bonferroni correction, there was a significant effect of
tDCS on accuracy in the Leiden data set (F(1, 42) = 4.48,
p = .040), with anodal tDCS leading to a decrement in
accuracy. The null result held for the Berkeley and
Amsterdam data sets. The Bayes factors indicated evi-
dence for the null hypothesis in all data sets (Berkeley:
BFtdcs = 0.38; Amsterdam: BFtdcs = 0.2; Leiden: BFtdcs =
0.26). When the data sets were combined, the results re-
vealed substantial evidence in favor of the null hypothesis,
namely, that tDCS stimulation did not influence accuracy
(BFtdcs = 0.15).
There were no significant interaction effects of Instruc-

tion and tDCS stimulation in the ANOVAs of the accuracy
data, and the Bayesian analyses showed little to substan-
tial evidence for a model not including this interaction

effect (Berkeley: F(1, 42) = 0.38, p = 1.0, BFtdcs × SAT =
0.35; Amsterdam: F(1, 42) = 0.24, p = 1.0, BFtdcs × SAT =
0.31; Leiden: F(1, 39) = 0.012, p= 1.0, BFtdcs × SAT = 0.34;
over all data sets: BFtdcs × SAT = 0.20).

In summary, the overall pattern observed here is similar
to that observed in prior studies of the speed–accuracy
trade-off in the random dot motion task (Forstmann
et al., 2008; Ratcliff & McKoon, 2008). We observed a
very robust effect of instructions on RTs (Bayes factor of
more than 10 trillion in favor of an effect), as well as a
robust effect on accuracy (Bayes factor of 57 in favor of
an effect). However, there was essentially no evidence that
anodal tDCS induced a consistent change in performance.

DDM Fits

The DDM was fit to all 44 participants. The mean param-
eter estimates and their standard deviations are pre-
sented in Table 1. Plotting the empirical RT quantiles

Table 1. Mean DDM Parameter Estimates and Standard Deviations

Data Set acc_spd tdcs t0 v a sv szr st0

Amsterdam acc anodal 0.403 (0.070) 1.38 (0.84) 1.10 (0.12) 0.58 (0.19) 0.32 (0.11) 0.209 (0.071)

sham 0.385 (0.069) 1.40 (0.67) 1.12 (0.18) 0.71 (0.12) 0.32 (0.10) 0.209 (0.082)

spd anodal 0.356 (0.043) 1.29 (0.86) 0.89 (0.14) 0.65 (0.20) 0.30 (0.11) 0.174 (0.079)

sham 0.342 (0.044) 1.28 (0.80) 0.92 (0.14) 0.61 (0.25) 0.33 (0.13) 0.158 (0.075)

Berkeley acc anodal 0.385 (0.090) 1.53 (1.32) 1.06 (0.16) 0.62 (0.26) 0.33 (0.13) 0.209 (0.137)

sham 0.389 (0.083) 1.66 (0.96) 1.14 (0.19) 0.68 (0.14) 0.27 (0.12) 0.203 (0.102)

spd anodal 0.334 (0.064) 1.52 (1.35) 0.85 (0.17) 0.69 (0.27) 0.32 (0.11) 0.138 (0.069)

sham 0.345 (0.059) 1.63 (0.96) 0.86 (0.13) 0.67 (0.23) 0.32 (0.13) 0.147 (0.071)

Leiden acc anodal 0.417 (0.110) 1.35 (1.03) 1.21 (0.30) 0.71 (0.37) 0.34 (0.13) 0.244 (0.100)

sham 0.438 (0.114) 1.44 (1.05) 1.14 (0.32) 0.61 (0.18) 0.34 (0.13) 0.234 (0.119)

spd anodal 0.347 (0.079) 1.14 (0.93) 0.86 (0.14) 0.72 (0.26) 0.30 (0.11) 0.137 (0.060)

sham 0.348 (0.088) 1.18 (0.99) 0.81 (0.11) 0.74 (0.18) 0.28 (0.16) 0.128 (0.063)

Mean parameter estimates (standard deviation) for the different data sets. The bias parameter z was fixed to 0.5. t0 = nondecision time; v = drift rate
(speed of evidence accumulation); a = threshold; sv = intertrial variability in drift rate; szr = intertrial variability in starting point; st0: intertrial
variability in nondecision time.

Figure 2. Mean proportion of correct responses. Error bars are bootstrapped standard errors (67% confidence interval). For all statistical analyses,
these proportions were first normalized using an arc-sine transformation.
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for all conditions and the predicted quantiles for all con-
ditions showed that the model fits were adequate, with
no evident biases. The individual empirical and predicted
quantiles are shown in Figure 3. Note that the predictions
of the DDM model for the higher quantiles are still un-
biased, but more variable than for the other quantiles.
This pattern has been observed in previous studies (e.g.,
Ratcliff & Tuerlinckx, 2002).

DDM Threshold Parameters

Threshold (a)

The main variable of interest in this study was the DDM
estimate of the threshold parameter. This parameter
represents the amount of evidence accumulated before
the participant makes a response. As predicted, the
threshold was significantly lower in the speed-stressed
condition compared with the accuracy-stressed condition
(0.87 vs. 1.13; see Figure 4).This difference was observed
in all three data sets (Berkeley: F(1, 42) = 47.8, p < .001;
Amsterdam: F(1, 42) = 43.5, p < .001; Leiden: F(1, 39) =
49.7, p < .001). The Bayesian analyses showed a very
strong preference for a model including a main effect
of Speed–Accuracy condition on the threshold parameter
(Berkeley: BFSAT = 68,060; Amsterdam: BFSAT = 17,501;
Leiden: BFSAT = 13,276; over all data sets: BFSAT =
2.38e+14).
In terms of the core question motivating this study,

there was no significant main effect of tDCS, with anodal
stimulation producing no change in threshold compared
with sham stimulation (Berkeley: F(1, 42) = 1.76, p =
1.0; Amsterdam: F(1, 42) = 0.61, p = 1.0; Leiden: F(1,
39) = 1.38, p = 1.0). The Bayesian analyses weakly
preferred a model where the factor tDCS was omitted
(BFtdcs = 0.45 for the Berkeley data set; BFtdcs = 0.30 for
the Amsterdam data set; BFtdcs = 0.37 for the Leiden data
set). When all of the data sets are considered together,
there is substantial evidence for the null hypothesis that
tDCS does not affect the response threshold (BFtdcs =
0.16).
The Instruction × Stimulation interaction was also not

significant (Berkeley: F(1, 42) = 1.15, p= 1.0; Amsterdam:
F(1, 42) = 0.00, p= 1.0; Leiden: F(1, 39) = 0.07, p= 1.0).
Here the Bayesian analyses showed limited evidence in
favor of the null hypothesis (Berkeley: BFtdcs × SAT = 0.47;
Amsterdam: BFtdcs × SAT=0.34; Leiden: BFtdcs × SAT= 0.36),
and the combined data sets showed substantial evidence
in favor of the null hypothesis, favoring a model without
the interaction term (BFtdcs × SAT = 0.23).

Figure 3. Quantile–quantile plots of empirical versus predicted data.
Empirical response proportions and RT quantiles for correct and
incorrect responses, plotted against the responses proportions and RT
quantiles as predicted by the DDM, given the parameters estimated
by fast-dm. The plots show that the data fit well by the model, without
bias. They also show that the proportion of correct trials, as well as
the RT quantiles, are generally lower in the speed-stressed trials.
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Nondecision Time (t0)

The participants showed consistently lower nondecision
times on the speed-stressed trials in comparison with
the accuracy-stressed trials (Ratcliff & McKoon, 2008;
Ratcliff, 2006). The estimated values were 345 and 402
msec for the speed- and accuracy-stressed trials, respec-
tively (Berkeley: F(1, 42) = 18.6, p < .001, BFSAT =
3.40; Amsterdam: F(1, 42) = 22.4, p < .001, BFSAT =
11.9; Leiden: F(1, 39) = 32.1, p < .001, BFSAT = 11.5;
over all data sets: BFSAT = 6186).
However, there was again no effect of Stimulation on

nondecision time, with mean values of 373 and 374 msec
for the anodal and sham stimulation conditions, respectively
(Berkeley: F(1, 42)=0.4,p=1.0, BFtdcs=0.34; Amsterdam:
F(1, 42) = 2.7, p = .963, BFtdcs = 0.35; Leiden: F(1, 39) =
0.6, p= 1.0, BFtdcs = 0.37; over all data sets: BFtdcs = 0.22),
nor was the instruction by stimulation interaction significant
(Berkeley: F(1, 42) = 0.08, p = 1.0, BFtdcs × SAT = 0.28;
Amsterdam: F(1, 42) = 0.02, p = 1.0, BFtdcs × SAT = 0.43;
Leiden: F(1, 39) = 0.5, p = 1.0, BFtdcs × SAT = 0.29; over
all data sets: BFtdcs × SAT = 0.16).

Drift Rate (v)

As has been shown before (Forstmann et al., 2008; Ratcliff
& McKoon, 2008), drift rate was similar in the speed and
accuracy conditions. The mean drift rate was 1.46 for
the accuracy-stressed regime and 1.34 for the speed-
stressed regime. The drift rate values did not differ in
any of the three data sets (Berkeley: F(1, 42) = 0.06, p =
1.0, BFSAT = 0.26; Amsterdam: F(1, 42) = 1.7, p = 1.0,
BFSAT = 0.29; Leiden: F(1, 39) = 2.7, p = .936, BFSAT =
0.38; over all data sets: BFSAT = 0.22).
Drift rate was also not influenced by tDCS, with mean

values of 1.37 and 1.44 for the anodal and sham stimulation
conditions, respectively (Berkeley: F(1, 42) = 1.5, p = 1.0,
BFtdcs= 0.28; Amsterdam: F(1, 42)= 0.03, p=1.0, BFtdcs =
0.26; Leiden: F(1, 39) = 0.203, p= 1.0, BFtdcs = 0.28; over
all data sets: BFtdcs = 0.18). There was no interaction be-
tween Instruction and Stimulation on drift rate (Berkeley:
F(1, 42) = 0.003, p= 1.0, BFtdcs × SAT = 0.35; Amsterdam:
F(1, 42) = 0.051, p = 1.0, BFtdcs × SAT = 0.34; Leiden: F(1,

39) = 0.03, p = 1.0, BFtdcs × SAT = 0.36; over all data sets:
BFtdcs × SAT = 0.22).

Exploratory Analyses

Block Analysis

Studies involving tDCS suggest that anodal stimulation of
1 mA for 13 min should produce physiological changes
up to 60 min (Nitsche & Paulus, 2001). Participants com-
pleted the experiment in approximately 45 min, a dura-
tion falling within this window. Nonetheless, we were
concerned that the effects of tDCS might be more effec-
tive in the beginning of the experiment. To examine this
question, we split the data into four blocks of 150 trials
each, asking whether there was an interaction between
stimulation type (anodal vs. sham) and block on RT or
accuracy.

This interaction was not evident in any of the data sets
for the RT data (all Fs < 0.48, p > .05; Bayesian ANOVA
on combined data showed that the model not including
this interaction factor is 49.3 times more likely than the
full model) and for the accuracy data (all Fs < 0.12, p >
.05 Bayesian ANOVA without interaction factor is 39.7
times more likely than full model). The three-way inter-
action Stimulation × Cue × Block was also not significant
for any of the conditions for RT (all Fs < 0.118, p > .05;
Bayesian ANOVA without interaction factor is 23.7 times
more likely than full model) and accuracy (all Fs < 0.177;
p > .05; Bayesian ANOVA without interaction factor is
25.2 times more likely than full model). These results
clearly indicate that effects of tDCS were not selectively
effective at the beginning of the experiment.

Cluster Analysis

A second post hoc hypothesis was that the effect of tDCS
might be overshadowed by individual variability in sensi-
tivity to electrical stimulation (Labruna et al., 2015). As
estimated by the DDM, 25 of the 44 participants (57%)
showed a lower response threshold following anodal
stimulation compared with sham stimulation. It is possi-
ble that the participants in this subgroup were more sen-
sitive to effects of tDCS. Factors such as hair thickness,

Figure 4. Mean threshold parameter a estimates. Error bars indicate bootstrapped standard errors (67% confidence interval).
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skin condition, and the shape of the skull can influence
the effectiveness of tDCS (Rossini et al., 2015; Opitz et al.,
2013), and it has recently been shown that sensitivity to
anodal tDCS is related to sensitivity to TMS (Labruna
et al., 2015).

To examine this issue, we divided the participants into
a group of “responders” and “nonresponders” based on
the effect of tDCS stimulation condition on the DDM re-
sponse threshold parameter. We did so using a Gaussian
mixture model, fit with either one or two clusters on
these effect sizes. We compared the two models using
the Bayesian Information Criterion (BIC) and Schwartz
weights to see which was most likely given the data
(Vandekerckhove, Matzke, & Wagenmakers, 2015). If
there exists a subset of nonresponders, one would
expect the two-cluster model to explain the data better
than the model with only one cluster.

The results showed that the one-cluster model out-
performed the two-cluster model with a BIC of −44.5 vs.
a BIC of −33.6. These two BICs correspond to a Schwartz
weight of 9.95E−13, which means that the model with
one cluster is approximately 1,000,000,000,000 times more
likely than a two-cluster model. In summary, the results
provide no evidence for responder and nonresponder
subgroups.

Test–Retest Reliability

The primary dependent variable in this study was the
threshold parameters, estimated with the DDM. To assess
the reliability of this measure, we correlated the esti-
mated values for Session 1 and Session 2. Test–retest
reliability was high: For the accuracy-stressed condition,
the correlation was .72; for the speed-stressed condition,
the correlation was .68. Divided further into the three data
sets (and two instruction conditions), the test–retest cor-
relations ranged from .40 to .83. A Bayesian linear model
with data set, instruction, and participant as random fac-
tors suggested that a model with a linear relationship of
the threshold parameter between the two sessions is
more than 21 million times more likely than a model
without this relationship. These results show that it is
unlikely that a possible effect of tDCS was overshadowed
by intraindividual variability.

Session and Order Effects

We also assessed if the possible effect of tDCS might
have been overshadowed by a session or order effect.
Independent from the other factors, participants’ perfor-
mance improved in Session 2 compared with Session 1.
In the accuracy-stressed condition, participants were on
average 57msec (SD=73msec) faster in the second session
and made 1.2% less errors (SD = 7.4%). In the speed-
stressed condition, they were 32 msec faster (SD =
40.0 msec) and made 0.4% (SD = 6.9%) less errors. The
effect of session on RT was significant in two data sets

(Berkeley: F(1, 42) = 4.0, p= .0517; Amsterdam: F(1, 42) =
9.5, p= .004; Leiden: F(1, 39) = 5.6, p= .023) and a Bayesian
ANOVA favored a model including this effect with a fac-
tor of 7.1. However, accuracy was not significantly dif-
ferent across sessions (all ps > .05; Bayes factor is 2.8 in
favor of the null model).
The lower RTs, coupled with minimal change in accu-

racy, led to lower estimates of the response threshold in
Session 2. In the accuracy-stressed condition, the thresh-
old dropped from 1.16 (SD = 0.20) in the first session to
1.09 (SD = 0.23) in the second session. In the speed-
stressed condition, the decrease went from 0.90 (SD =
0.12) to 0.83 (SD = 0.14). This main effect of session
on threshold was significant in the Amsterdam, but not
the other data sets (Berkeley: F(1, 42) = 2.41, p = .128;
Amsterdam: F(1, 42) = 6.48, p = .015; Leiden: F(1, 42) =
2.65, p = .111). The Bayesian ANOVA favored a model
that includes session, with a Bayes factor of 3.0. However,
there were no interactions between session and stimu-
lation type for RT, accuracy, and threshold (all ps > .05,
all BFs < 0.4).
In a second-order analysis, we also considered whether

the first session involved anodal or sham stimulation.
Here we used thre-way ANOVAs with the factors Stimula-
tion order, Session, and Instruction, with the first factor
being between-participants (anodal first or sham first)
and the other two factors being within-participants.
Importantly, there was no significant effect of order on
the threshold estimates (all ps > .45; Bayes factor of
4.9 in favor of a model without a main effect of order),
nor was there a significant Order × Session interaction
(all ps > .17; Bayes factor of 3.4 in favor of a model with-
out this interaction). There were also no interactions in-
volving stimulation order on the RT (all ps > .27; Bayes
factor 4.5 in favor of no interaction) and accuracy data
(all ps > .32; Bayes factor 2.8 in favor of no interaction).
In summary, even when the improvement in perfor-

mance across sessions is taken into account, there is no
significant effect of tDCS condition in any of the data sets.

DISCUSSION

A growing body of empirical results frommultiple methods
and computational models have articulated a critical role
for the pre-SMA in decision-making (Frank et al., 2015;
Boehm et al., 2014; Mansfield et al., 2011; van Maanen
et al., 2011; Forstmann et al., 2008, 2010). These findings
led us to ask if anodal tDCS stimulation over the pre-SMA
would influence performance on a perceptual discrimi-
nation task. Specifically, we sought to provide causal evi-
dence for the role of this brain region in modulating the
decision threshold as people varied their performance to
emphasize speed or accuracy in judging the direction of
a moving dot pattern. We chose this task because it is very
amenable to both performance- andmodel-based analyses.
Moreover, it allowed us to compare two versions of the
threshold hypothesis, one in which pre-SMA neurons
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directly instantiates a decision threshold and the other in
which pre-SMA modulates downstream areas that instan-
tiate a threshold (van Maanen et al., 2011; Bogacz et al.,
2010).
In three experiments, conducted with different sam-

ples and in different laboratories, we failed to find any
consistent change in performance following anodal tDCS
over pre-SMA, relative to sham stimulation. Although
caution is always required when drawing conclusions
about the lack of an effect, the results of our Bayesian
analyses provide substantial evidence in favor of the null
hypothesis. We failed to observe a main effect of tDCS
stimulation on DDM parameter estimates of the response
threshold. More concretely, the null hypothesis was 5.9
times more likely than the alternative hypothesis across
the three experiments. A similar result was obtained in
the interaction test where we ask whether tDCS had a dif-
ferential effect on the speed or accuracy condition (instruc-
tion by stimulation interaction). Here the null hypothesis
was 4.2 times more likely than the alternative hypothesis.
Additional analyses showed that this null result could not
be explained by a decrease of tDCS efficacy over the ex-
perimental session or due to changes in performance from
practice.
One possible explanation for these null findings is that

the pre-SMA is not causally involved in modulating the
response threshold in perceptual decision-making tasks.
This conclusion would stand in contrast to the impres-
sive evidence from fMRI studies. Although fMRI is not
well suited for drawing causal inferences—and indeed,
one of the motivating reasons for our study—the BOLD
response in these studies has been shown to vary with
response threshold, both in comparisons between indi-
viduals (Mansfield et al., 2011; Forstmann et al., 2008) and
in trial-by-trial fluctuations (Boehm et al., 2014; van Maanen
et al., 2011). Moreover, these findings are in line with
prominent neurocomputational models that make specific
predictions for the role of the pre-SMA in speeded deci-
sion-making tasks (Bogacz et al., 2010; Frank, 2006).
Another possibility is that the tDCS protocol employed

in this study was not effective in modulating cortical ac-
tivity in the pre-SMA; as such, our experimental manipu-
lation was not sufficiently sensitive to induce behavioral
changes. This insensitivity may reflect a general limitation
with tDCS in altering cognitive processes. This would be
consistent with the results of two recent meta-analyses
(Horvath et al., 2014, 2015); on the other hand, several
critiques of such meta-analyses have been published
(Antal, Keeser, Priori, Padberg, & Nitsche, accepted; Nitsche
et al., 2015), and it seems premature to dismiss tDCS as a
tool for manipulating brain function.
More specific limitations may be related to our par-

ticular protocol. The placement of the active electrode at
FCZ was informed by neuroimaging (e.g., Forstmann
et al., 2008) and EEG studies of the SAT (Boehm et al.,
2014). Boehm and colleagues (2014), using a near-identical
task as that employed here, reported that electrode FCZ

was most related to trial-to-trial variability in response
threshold. Other tDCS studies that have been successful
in modulating behavior have targeted pre-SMA with either
identical electrode placements (Spieser et al., 2015) or with
the anode in a neighboring location (Liang et al., 2014;
Kwon & Kwon, 2013; Hsu et al., 2011). Given the spatial
resolution of tDCS (Tremblay et al., 2014; Wassermann,
Epstein, & Ziemann, 2008; Miranda, Lomarev, & Hallett,
2006), the differences between these locations are likely
negligible. Most important, with these configurations,
anodal tDCS has been found to modulate performance
on tasks putatively linked to pre-SMA (see Table 2). For
example, participants were more efficient in inhibiting a
prepotent response after anodal stimulation over pre-SMA
compared with sham stimulation (Hayduk-Costa et al.,
2013; Kwon & Kwon, 2013).

Because research resources are limited, we limited our
study to anodal tDCS and did not test the effect of cath-
odal tDCS. We opted for this approach given that cath-
odal tDCS is generally not as effective as anodal tDCS
in modulating behavior (Jacobson, Koslowsky, & Lavidor,
2011). Indeed, in tDCS studies targeting pre-SMA, behav-
ioral effects were limited to anodal stimulation; cathodal
produced similar effects as sham stimulation (Hayduk-
Costa et al., 2013; Hsu et al., 2011). However, one recent
tDCS study by Spieser et al. (2015) showed the exact op-
posite pattern, with cathodal stimulation over pre-SMA
enhancing performance on a measure of cognitive con-
trol. The improvement here might be related to a de-
crease in motor excitability given that the benefits were
limited to trials in which participants were less likely to
make fast, prepotent responses. Given these results, it
would be useful to revisit our task and examine the effects
of cathodal stimulation.

Other important methodological issues to consider
pertain to the timing (online or offline), intensity, and
duration of stimulation. The effects of increased stim-
ulation intensity and duration on brain function are
nonlinear, and there are even reports that the effects
can be nonmonotonic, reversing at high levels of stimu-
lation (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche,
2013). In terms of timing, we opted to use an offline pro-
cedure, completing the tDCS phase before participants
started the task. Our protocol is similar to that employed
in other studies of frontal lobe function (Tremblay et al.,
2014), including pre-SMA (Liang et al., 2014; Hayduk-
Costa et al., 2013; Kwon & Kwon, 2013; Hsu et al.,
2011). Nonetheless, it is possible that we would have
observed a different pattern of results with another pro-
tocol. Of course, it is not practical to do parametric manip-
ulations in every study. We need to recognize that, as
with any new procedure, there will be a “learning period”
in which researchers explore different protocols. This
point also underscores the importance of publishing null
results, allowing the scientific community to be aware of
the conditions that produce both positive and negative
effects.
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Table 2. Stimulation Protocols and Behavioral Results of tDCS Studies Targeting the Pre-SMA

Article n

Within/
Across
Subjects? Area Task Stim

Sponge
Size Ref

Stim
Intensity

Online/
Offline

Stim
Duration Result

Anodal
Stimulation
Pre-SMA

Functioning

Cathodal
Stimulation
Pre-SMA

Functioning

Spieser et al.
(2015)

24 within SMC Simon task FCZ 7 × 5 cm Left cheek 1 mA Combined 20 min Cathodal decreased
fast overt errors.
Anodal showed
no effect.

no effect up

Hsu et al.
(2011)

14 within pre-
SMA

Stop signal FZ 4 × 4 cm Left cheek 1.5 mA Offline 10 min Anodal increased
stopping efficiency.
Cathodal impaired
stopping efficiency.

up down

Kwon
and Kwon
(2013)

40 within pre-
SMA

Stop signal 4 cm
anterior
to CZ

35 cm2 “contralateral”
Supraorbital
area

1 mA Offline 10 min Anodal increased
stopping efficiency.

up n.a.

Hayduk-Costa
et al. (2013)

12 within SMA Anticipation
stop signal

1.8 cm
anterior
to CZ

7.8 cm2 “centrally on
the forehead
directly above
the eyebrows”

1 mA Offline 10 min Anodal decreased
stopping efficiency.
Cathodal showed
no effect.
Anodal stimulation
also reduced
’GO-trimes’/
response
intitation.

down no effect

Liang et al.
(2014)

18 Within pre-
SMA

Stop signal FZ 4 × 4 cm Left cheek 1.5 mA Offline 10 min Anodal stimulation
increased stopping
efficiency.

up n.a.
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Conclusion

We report three independent experiments that examined
the effects of anodal tDCS over pre-SMA on performance
in a speeded perceptual decision-making task. We ex-
pected that stimulation would influence how the partici-
pants alter their response threshold when balancing
demands on speed and accuracy. However, across all
three studies, the results provide strong evidence that
anodal tDCS had no consistent impact on performance
in this task. Our findings are particularly interesting in
light of the recent concerns with the efficacy of tDCS
to modulate cognitive function (Horvath et al., 2014,
2015; Tremblay et al., 2014). The utility to tDCS as a tool
for cognitive neuroscience will surely benefit from the
dissemination of reports, both positive and negative, con-
cerning studies that look at a range of task domains and
stimulation protocols.
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