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Recent models of interval timing have emphasized local,

modality-specific processes or a core network centered on a

cortico-thalamic-striatal circuit, leaving the role of the

cerebellum unclear. We examine this issue, using current

taxonomies of timing as a guide to review the association of the

cerebellum in motor and perceptual tasks in which timing

information is explicit or implicit. Evidence from

neuropsychological, neurophysiological, and neuroimaging

studies indicates that the involvement of the cerebellum in

timing is not restricted to any subdomain of this taxonomy.

However, an emerging pattern is that tasks in which timing is

done in cyclic continuous contexts do not rely on the

cerebellum. In such scenarios, timing may be an emergent

property of system dynamics, and especially oscillatory

entrainment. The cerebellum may be necessary to time discrete

intervals in the absence of continuous cyclic dynamics.
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Introduction
Although time is a central organizing dimension of experi-

ence and interaction with the world [1], the absence of a

sensory pathway to directly transduce temporal quantity

has made it difficult to understand the neural mechanisms

by which we represent time. With the emergence of

cognitive neuroscience tools to map function and structure,

research on timing focused on identifying the contribution

of neuroanatomical structures to tasks involving temporal

processing. Inspired by ‘internal clock’ models of timing

[2,3], as well as behavioral work suggesting that timing was

supramodal [4,5], early research of timing attempted to

isolate dedicated and centralized timing systems that op-

erate across tasks parameters [6]. Following observations

that cerebellar lesions lead to behavioral deficits on a

range of timing tasks [7–9], it was hypothesized that the
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cerebellum played a crucial role in the precise represen-

tation of temporal information.

Subsequent work, some of it using identical tasks as those

used in the cerebellar studies, pointed to the involvement

of other neural structures in temporal processing, includ-

ing the basal ganglia (BG), supplementary motor area

(SMA), right inferior frontal cortex, and left inferior

parietal cortex [10,11,12�,13]. This body of work has

motivated current influential models [14,15,16�], includ-

ing the idea that the core implementation of duration

representation centers on a cortico-thalamic-striatal net-

work comprised of the SMA, BG and thalamus, as well as

models in which timing is a ubiquitous property of neural

function, not dependent on specialized, amodal mecha-

nisms [17].

The role of the cerebellum in this picture is fuzzy. In

humans, the cerebellum has generally been less accessi-

ble to study with some of the tools of cognitive neurosci-

ence: Few EEG studies have attempted to focus on signal

sources attributed to the cerebellum, many fMRI studies

employ slice angles that provide minimal cerebellar cov-

erage, and, unlike Parkinson’s disease, the treatment of

cerebellar disorders has not yet led to the development of

pharmacological and physiological interventions that can

be exploited to test functional hypotheses [18,19]. The-

oretically, different hypotheses have been offered to

recast the role of the cerebellum in timing. At one

extreme is the view that the cerebellum serves as a

compensatory route to support temporal processing,

and this becomes especially apparent when the cortico-

striatal route is malfunctioning [16�]. An alternative is that

the cerebellum is recruited by the cortico-striatal network

in a context-dependent manner, for example when timing

intervals in the sub-second range [20] (but see [21]).

In evaluating functional hypotheses, it is important to

recognize that the scope of timing research has become

much broader over the past decades and, as such, the

number of tasks falling under this rubric has become much

larger. As evident in this volume, ‘timing tasks’ come in

many different flavors. The challenge is to identify the

computational principles and neural mechanisms that al-

low us to perceive temporal quantities, exploit temporal

regularities, and produce actions that exhibit consistent

temporal features. A useful approach is to consider current

taxonomic classifications in the timing literature.

In a seminal review, Coull and Nobre [22��] argued that

the representation of time may be implemented in dif-

ferent neuroanatomical networks depending on whether
www.sciencedirect.com
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timing is explicit or implicit to the task at hand. They

suggested that timing is explicit in scenarios in which an

overt report of a temporal quantity is required, such as

when judging which of two events is longer. Conversely,

timing is implicit when an overt report is not required, but

rather the temporal information can optimize performance

on a non-temporal task. A typical example is when a target

in a speeded detection task is likely to appear at a specified

point in time following a warning signal. Performance is

facilitated when the target appears at the expected time

compared to when the timing is unexpectedly changed or

when the timing is random. This behavioral change indi-

cates that the interval duration was measured at some level

and used to form predictions that guide attention in time

[11,23]. Coull and Nobre [22��] also emphasized that the

explicit/implicit dimension is orthogonal to a common

distinction that is made in timing literature between motor

timing, in which timing is part of the planning or execution

of an action, and perceptual timing, tasks in which no

movement is required [24]. For example, judging which

of two intervals is longer is a case of explicit perceptual

timing, while producing a motor act whose length matches

that of a previously learned interval is a case of explicit

motor timing.

The combination of these two dimensions creates four

sub-domains of timing. We examine here if there are

particular sub-domains that rely on or involve the cere-

bellum. Our analysis is limited to tasks in the subsecond

range given that most of the work on cerebellar timing has

been limited to tasks in this range [20].

The role of the cerebellum in explicit and
implicit motor timing
The cerebellum has traditionally been associated with

motor timing. Cerebellar ataxia includes, among others,

difficulties in the precise temporal control of voluntary

action. Arm and eye movements are dysmetric, under-

shooting or overshooting the target [25,26], and speech

becomes dysarthric, with a loss of clarity of individual

phonemes and abnormalities in rate and modulation [27].

Direct tests of explicit motor timing have involved tasks

such as the interval reproduction task in which the onset

or duration of a movement must match a previously

learned, discrete interval. Cerebellar patients exhibit

larger variability when in reproducing the intervals

[20]. Correspondingly, activation increases in the cere-

bellum are observed during interval reproduction [24],

and applying transcranial magnetic stimulation (TMS) to

the cerebellum can produce temporal distortions [28].

Individuals with cerebellar lesions are also impaired on

the synchronization-continuation tapping task (SCT). In

this task, traditionally viewed as the task of choice for

explicit sensorimotor timing, repetitive movements (e.g.,

tapping) are first synchronized to an external metronome

and then continued at the same pace after the metronome
www.sciencedirect.com 
is terminated. Again, the primary deficit is an increase in

variability, observed during both the paced and unpaced

phases [7,9,29]. Moreover, imaging studies in healthy

individuals have reported increased activation in the

cerebellum during both stages of the SCT [30–33]. Re-

cent modeling work confirms that the deficit in this task in

cerebellar patients is related to variability of a timekeep-

ing component [34].

The cerebellum is implicated not only in explicit, but also

in implicit motor timing. Perhaps the best evidence for

this comes from the vast literature on eyeblink condition-

ing. Learning in this task not only requires forming an

association between the conditioned (e.g., tone) and

unconditioned stimuli (e.g., airpuff), but also learning

the precise temporal relationship between these events.

This allows for the execution of the conditioned response

(CR) at the expected time of the unconditioned stimulus.

Timing is implicit, not only in the sense that participants

are unaware of the temporal regularity, but also in that

timing here entails a form of prediction that allows the

formation of a novel association. Lesions to the cerebel-

lum impair this learning, and specifically the ability to

accurately time the CR [35,36]. Indeed, in trained ani-

mals, lesions of the cerebellar cortex abolish the precise

timing; the CR is now time-locked to the CS rather than

the US [35]. Eyeblink conditioning has been perhaps the

most sophisticated model system for studying the cellular

and molecular mechanisms of timing [37–39].

However, the cerebellum is not necessary in all implicit

motor timing contexts. Spencer and colleagues ([40,41��],
but see [42]) found that individuals with cerebellar de-

generation exhibit minimal impairment when producing

circles at a constant rate. This performance stands in

contrast to the increased variability observed when the

periodic movements are produced by finger tapping or

alternating phases of circle drawing and pauses. The

authors proposed that the cerebellum is not essential

when timing is emergent, reflecting the operation of a

control variable associated with regulating dynamics in a

continuous manner. This hypothesis is consistent with

the finding that discontinuous rhythmic movements acti-

vate the cerebellum more compared to continuous rhyth-

mic movements [43].

The cerebellum in explicit and implicit
perceptual timing
The functional domain of the cerebellum is not limited to

sensorimotor control, with neuroimaging and neuropsy-

chological studies suggesting a role in domains as diverse

as attention, affect, and language. As part of the interest in

non-motor functions of the cerebellum, there has been

considerable study of explicit and implicit timing tasks.

Duration estimation/discrimination tasks have been used

to study explicit timing, as the response requirements are

minimal and control tasks can involve similar stimuli but
Current Opinion in Behavioral Sciences 2016, 8:282–288



284 Time in perception and action
require perceptual judgments of non-temporal properties

(e.g., position, loudness). Several lines of evidence indicate

that the cerebellum is essential for duration estimation.

Patients with cerebellar degeneration exhibit elevated

discrimination thresholds on duration discrimination tasks

(e.g., require greater difference to determine if a test

interval is longer or shorter than a standard interval)

[7,44], and imaging studies in healthy individual have

revealed task-specific activations within the cerebellum

[45,46] or changes in cerebro-cerebellar interactions, espe-

cially with the SMA and premotor cortex [47,48].

Interestingly, as shown in a series of studies using an

extensive battery of tests, not all forms of explicit per-

ceptual timing depend on the cerebellum [49�,50,51].

Although confirming earlier reports of increased percep-

tual thresholds in judging the duration of single intervals,

the results revealed an interesting dissociation. The

patients did not show an impairment when the temporal

judgments were conducted in the context of rhythmic

streams; for example, when the task required deciding

which of two streams was more isochronous, or which

contained a temporal deviance from isochronism. Thus,

the performance of cerebellar patients was impaired for

single intervals but not for beat-based judgments [49�]. A

similar dissociation was observed following continuous

transcranial magnetic theta-burst stimulation to the cere-

bellum in healthy individuals [50] and in fMRI [51].

A representative task of implicit perceptual timing is the

temporal orienting task in which participants use trial-by-

trial cues to temporally anticipate a target stimulus that

requires a discriminative response [11,52,53]. Perfor-

mance benefits are observed when the interval between

the cue and target is fixed. Imaging studies have revealed

increased activations in the cerebellum in this task rela-

tive to conditions in which prediction is purely spatial [11]

or in conditions in which the target is temporally unpre-

dictable [52]. However, when speeded responses are

required, the temporal cue may facilitate an anticipatory

perceptual process or motor preparation, or both [53].

Furthermore, the fact that the duration is not overtly

reported does not rule out the possibility that it is covertly

tracked, perhaps even in an explicit manner, similar to

that in duration estimation tasks. Thus it is problematic to

refer to timing as purely ‘implicit’ when the interval

between the cue and target is fixed. In an interesting

variation, the cue-target interval is not specified on each

trial, but preparation can be adjusted according to the

probability distribution of intervals in previous trials [54].

Thus, while the motor component remains, timing would

now seem to be more implicit given that there is no single

interval to be timed. Patients with lesions to the cerebel-

lum show difficulties in performing this adjustment [55].

In another task used to study perceptual timing, a moving

object disappears behind an occluder and then reappears
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after a short interval. In the timing condition, the judg-

ment is based on whether the object reappeared at the

expected or unexpected time; in the spatial condition, the

judgment is based on whether the object appeared at an

expected or unexpected location. Timing here may be

implicit, in that the judgment is assumed to be based on

an inference about the velocity of the stimulus. Cerebel-

lar activation is greater in the timing condition compared

to the spatial condition [56]. Similarly, patients with

cerebellar degeneration have difficulty on interception

tasks [57].

Timing is also considered implicit when the stimulation is

rhythmic such as in music, speech, and biological motion.

In a representative task, participants are presented with a

rhythmic stream of stimuli before the appearance of a

target that requires a non-speeded response concerning a

non-temporal property [58,59]. Performance benefits are

observed when the target appears on the beat relative to

when the target is off the beat (or, in other control

conditions, when the stream is non-isochronous). This

implies the operation of a predictive temporal adjust-

ment, similar to that in temporal cueing tasks. This form

of anticipation appears to be implicit, as it occurs even

when explicit timing is engaged by a secondary task [60�].
By contrast to the implicit perceptual timing tasks

reviewed above, imaging studies involving rhythmic pre-

dictions fail to find activations in the cerebellum [61,62�].
Indeed, a contrast of isochronous versus non-isochronous

streams often finds relatively greater cerebellar activation

in the non-isochronous condition [62�].

Absence of cerebellar involvement in temporal
representation arising from rhythmic
dynamics
An interesting pattern emerges when considering those

tasks, shown in bold red font in Figure 1, that do not appear

to involve the cerebellum. A common denominator to these

tasks is that timing can be based on some form of continuous

dynamics. One example from the motor domain is circle

drawing in which it has been proposed that the continuous

nature of the movements allows timing to become implicit

[41��]. In the perceptual domain, representative explicit

and implicit tasks include beat-based temporal discrimina-

tions and rhythmic orientation, respectively.

Presumably, non-cerebellar circuits such as the basal

ganglia or SMA are essential for rhythmic processing

[62�,63,64]. Alternatively, in continuous cyclic contexts,

timing may be an emergent property of system dynamics.

For example, temporal regularities in circle drawing can

emerge from a control parameter such as the maintenance

of a constant angular velocity [40,41��]. In rhythm-based

perceptual timing, a similar indirect representation of

time could come about from the exploitation of neural

oscillations in sensory circuits. Although oscillatory mech-

anisms are central in some models of dedicated timing
www.sciencedirect.com
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Figure 1
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The involvement of the cerebellum in subdomains of timing. As suggested by Coull and Nobre [22��], timing can be conducted explicitly or implicitly,

in the motor or perceptual domains. Representative tasks are listed for each subdomain, some of which involve the cerebellum (black) and some that

do not (bold red font). The cerebellum is associated with all tasks that are based on temporal contexts defined by discrete intervals. By contrast, tasks

that do not involve the cerebellum are those in which timing is established or emerges from a continuous cyclic context.
(e.g., pacemaker-accumulator models [2,3]), exposure to

rhythmic stimuli may induce oscillations in sensory cir-

cuits or entrain pre-existing oscillations in a stimulus-

driven manner [65,66]. Recent evidence indicates that

these oscillations can support temporal predictions

[58,59,67��,68]. Oscillations can also inform explicit tem-

poral judgments. For example, a deviation in a rhythmic

sequence can be expressed as a phase shift of a stimulus

relative to an entrained oscillator.

Notably, Coull and Nobre have suggested that, for im-

plicit perceptual timing, a distinction should be made

between predictions that emerge as a by-product of

temporal regularities in the stimulus (e.g., motion, rhythm

or the passage of time itself) and endogenous predictions

that are based on an internal comparison of elapsed time

to a memorized interval (e.g., as in single-interval tem-

poral orientating tasks) [22��]. With respect to the cere-

bellum, the relevant functional distinction is between

timing that is performed discretely between defined

events and timing that emerges from the continuous

dynamics, with the cerebellum crucial for the former.

This distinction is not only relevant for implicit percep-

tual timing, but applies generally.

One branch that fails to follow the interval/rhythmic

taxonomic dissociation is the finding that cerebellar pa-

thology does disrupt performance in rhythmic tapping

tasks. Ironically, this is the task that provided the first
www.sciencedirect.com 
direct tests of the cerebellar timing hypothesis [7]. It is

important to consider two issues here. First, repetitive

tapping relies on the prediction of forthcoming events

such as a metronome signal during a pacing phase or the

sensory events of the tap during both paced and unpaced

phases. These predictions, or rather violations of such

predictions may trigger corrective processes. The cere-

bellum is strongly linked, even in non-temporal domains,

to the generation of sensorimotor predictions and use of

this information for error-based adjustments [69]. Thus,

cerebellar involvement in rhythmic tapping may be relat-

ed to other functions of this structure (see also [70]).

Second, while repetitive tapping would appear to be a

rhythmic task, formal models suggest that the series of

events are really the result of a concatenation process of

successive samples from a single-interval control process

[71]. Consistent with this hypothesis, performance in

repetitive tapping, but not circle drawing, is correlated

with explicit duration discrimination [72]. These two

hypotheses linking the cerebellum to repetitive tapping,

one based on error correction and the other on a concate-

nation process of discrete intervals/events, would suggest

that this task is misclassified as representative of contin-

uous, explicit motor timing.

Conclusions
We have examined three prominent dimensions in the

timing literature in search of general principles that can
Current Opinion in Behavioral Sciences 2016, 8:282–288
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help define the functional domain of the cerebellum in

temporal processing. As summarized in this brief review,

the evidence indicates that the domain encompasses both

motor and perceptual timing, and is observed in both

explicit and implicit tasks. We have highlighted one

important constraint, namely that the cerebellum may

be required when tasks require timing single intervals, or

what we have called event timing [38�,39], but not when

timing is inherent to rhythmic or continuous dynamics.

Importantly, we do not claim that this pattern is unique to

the cerebellum, or that other brain regions are not essen-

tial for event timing as defined here. Certainly the neu-

roimaging evidence suggests that cerebellar activation in

such tasks is accompanied by activation in a wide network

of timing-related structures, including the BG and SMA

[15,30–33,45,46,52], as well as modulation of cerebro-

cerebellar interactions [47,48]. The cerebellum may con-

tribute to this network through its capability to precisely

time isolated intervals in the absence of a temporal

context.

It should also be noted that there is considerable uneven-

ness in terms of the amount and variety of evidence

associated with the different branches in Figure 1, in-

cluding some conditions that have yet to be tested in

lesion studies. We hope that this review will help inspire

new tests to fill in these gaps, as well as motivate experi-

mental designs that can provide direct tests of the value of

this sort of taxonomic classification.
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