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Behavioral flexibility frequently requires the ability to modify an
on-going action. In some situations, optimal performance requires
modifying some components of an on-going action without interrupt-
ing other components of that action. This form of control has been
studied with the selective stop-signal task, in which participants are
instructed to abort only one movement of a multicomponent response.
Previous studies have shown a transient disruption of the nonaborted
component, suggesting limitations in our ability to use selective
inhibition. This cost has been attributed to a structural limitation
associated with the recruitment of a cortico-basal ganglia pathway that
allows for the rapid inhibition of action but operates in a relatively
generic manner. Using a model-based approach, we demonstrate that,
with a modest amount of training and highly compatible stimulus-
response mappings, people can perform a selective-stop task without
any cost on the nonaborted component. Prior reports of behavioral
costs in selective-stop tasks reflect, at least in part, a sampling bias in
the method commonly used to estimate such costs. These results
suggest that inhibition can be selectively controlled and present a
challenge for models of inhibitory control that posit the operation of
generic processes.

inhibition; selective stop; stop-signal task; plasticity; horse-race
model

BEHAVIORAL FLEXIBILITY FREQUENTLY requires the ability to mod-
ify an on-going action. In some situations, only part of the
planned action must be changed. For example, when walking
in the city with a friend, the appearance of a fast-moving car
may require that we abort a plan to cross the street but not
require that we temporarily halt our conversation. We ask here
how people produce selective inhibition.

The stop-signal task has been a favorite experimental tool to
study inhibitory control (Lappin and Erikson 1966; see a
review in Band et al. 2003). In this task, participants prepare to
make a speeded response. On some trials, they are cued to
abort the planned action. The likelihood of successful stopping
has been modeled as a horse race (Logan and Cowan 1984)
between signals associated with initiating or aborting the re-
sponse. At the neural level, this form of inhibition has been
linked to interactions between the cortex and basal ganglia
(Aron and Poldrack 2006; Aron et al. 2007; Mink 1996;
Wessel et al. 2013).

The use of the horse-race model to study inhibitory control
was developed for tasks in which a single response was either

executed or aborted. Subsequently, researchers extended this
work to look at situations in which participants were required
to selectively abort one component of a multicomponent action
(De Jong et al. 1995; Bedard et al. 2002; van den Wildenberg
and van der Molen 2004; Bissett and Logan 2014), asking if
similar processes were engaged during such selective-stop
tasks. De Jong et al. (1995) proposed that distinct forms of
inhibition operate during standard and selective stop-signal
tasks. For the former, a peripheral mechanism operates in a
generic manner, blocking or aborting the implementation of
central motor commands in the face of normal cortical prepa-
ratory signals. For the latter, a cortical mechanism is invoked
to selectively inhibit a specific action. This two-process hy-
pothesis complemented earlier findings showing that the later-
alized readiness potential (LRP), an electrophysiological
marker of cortical movement preparation, was only diminished
with early stop signals in the standard task; the LRP was of
normal magnitude on successful stop trials with a late stop
signal, suggestive of a subcortical mechanism for inhibition
(De Jong et al. 1990).

An alternative hypothesis, which we refer to as the restart
model, is that selective stopping entails the operation of two,
sequential processes (De Jong et al. 1995; Coxon et al. 2007;
Claffey et al. 2009; MacDonald et al 2012). First, a signal is
generated to transiently inhibit the motor system in a generic
manner and, as such, inhibits all planned actions. Second, the
nonaborted response is rapidly reprogrammed. This hypothesis
can account for the selective-stop cost, the increase in reaction
time (RT) observed for the nonaborted response on Selective-
Stop trials compared with Go trials. Physiological support for
the initial deployment of a generic stop command comes from
studies showing reduced motor-evoked potentials (MEPs) in
task-irrelevant muscles on successful Stop trials (Badry et al.
2009; Cai et al. 2012; Greenhouse et al. 2012; Majid et al.
2012), as well as EEG evidence of a similar pattern of activa-
tion for successful response inhibition and responses to unex-
pected events (Wessel and Aron 2013).

While the behavioral and transcranial magnetic stimulation
evidence is consistent with the restart model, the data remain
inconclusive about whether this process is obligatory. Green-
house et al. (2012) showed that MEPs elicited from leg mus-
cles were attenuated when participants aborted a manual re-
sponse. However, Majid et al. (2012) observed a similar
attenuation in leg MEPs in a nonselective task but not in a
condition requiring selective stopping. Moreover, various lines
of evidence suggest that the magnitude of selective-stop costs
may vary as a function of various factors such as task pre-
paredness. For example, foreknowledge of the to-be-inhibited
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effector reduces the selective-stopping cost (Aron and Ver-
bruggen 2008; Claffey et al. 2010; Majid et al. 2013). In
parallel with this behavioral effect, MEPs in task-irrelevant
effectors fail to show inhibition, a result that would argue
against the operation of a generic process (Cai et al. 2011).
Behavioral evidence of the absence of a selective-stop cost
comes from studies in which the selective-stop signal was only
associated with one of the potential responses (e.g., Aron et al.
2007; Jahfari et al. 2010) or in conditions involving a precue
(e.g., Aron and Verbruggen 2008; Claffey et al. 2010). Restric-
tive stop tasks may allow people to adopt strategies that entail
different preparatory states for the different stimuli (De Jong et
al. 1995).

In the present study, we reexamine the restart hypothesis,
asking if the initial recruitment of a generic inhibitory process
is obligatory in selective-stop tasks. To this end, we used a
stop-signal task optimized to favor selective stopping. We
show that traditional methods used to analyze the data from the
stop-signal task are biased (see MATERIALS AND METHODS). This
observation led us to develop a novel statistical method that
provides a rigorous test of selective-stop costs. The results
challenge the notion of generic inhibition. Rather, they point to
a softer constraint that reflects the degree of overlap between
representations associated with the selected and nonselected
components of a multicomponent action. When this overlap is
minimized, either by the task structure or training, we find that
the selective-stop cost can be eliminated.

MATERIALS AND METHODS

Participants

A total of 10 right-handed healthy participants (7 women, 3 men;
23.2 � 5.8 yr old) participated in the training experiment. Handedness
was confirmed with a condensed version of the Edinburgh Handed-
ness Inventory (Oldfield 1971). All participants gave written informed
consent and were financially compensated for their participation. The
protocol was approved by the Institutional Review Board of the
University of California, Berkeley.

Experimental Procedure

Participants were tested on a selective stop-signal task to assess the
RT cost associated with aborting one response of a multicomponent
movement (Fig. 1). Because we were interested in whether a selective

cost is inevitable due to the recruitment of a generic stopping process,
we designed the experiment to maximize the opportunity for partici-
pants to avoid this cost. This was achieved by providing the partici-
pants with multiple days of practice and monetary rewards, as well as
by assessing the benefit of a highly compatible stop signal.

The trial began with the participants resting their index fingers on
two response keys and the right foot on a foot pedal. An asterisk was
presented for a random delay (500–1,500 ms) to serve as a fixation
and alerting marker. After the delay, the asterisk was replaced by a go
signal, an arrow pointing to the left or right. This imperative served as
the signal that the participant should initiate two responses, a manual
choice response and an invariant foot response. The manual choice
was between the left or right index finger, with the selected finger
corresponding to the direction of the arrow. For the invariant re-
sponse, the participants pressed a foot pedal with the right foot. The
arrow disappeared when a response was detected, or after 2 s on
successful Stop trials, after which the screen went blank for a
1,000-ms intertrial interval.

On 33% of the trials, a stop signal was presented, indicating that the
participant should selectively abort the manual response. In separate
sessions, we compared two different stop signals. In the Color con-
dition, the color of the arrow turned red. In a Tactile condition, the
response key associated with the cued finger vibrated. We reasoned
that the high degree of compatibility in the Tactile condition would
enable participants to readily identify the response that should be
aborted, eliminating any cost associated with mentally assigning a
relatively abstract stop signal (e.g., color red) to one of two prepared
responses (Rosenbaum et al. 2006). Note that, unlike previous studies,
the stop signal is not associated with a single response alternative;
across trials, the stop signal occurs on both left- and right-hand trials.

The interval between the onset of the go signal and the stop signal
is referred to as the stop-signal delay (SSD). An adaptive, staircase
procedure was employed to determine the SSD on a trial-by-trial basis
(Osman et al. 1986, 1990; Band et al. 2003). The SSD value was
adjusted in steps of 50 ms, increasing after a successful Stop trial and
decreasing after a failed Stop trial, with a lower limit of 50 ms. This
method converges to an SSD value at which participants succeed in
aborting a planned response on �50% of the trials (Levitt 1971). Two
interleaved staircases, one starting at 50 ms and the other at 300 ms,
were used to determine the SSD.

Participants were instructed to make the two responses as quickly
as possible on a Go trial, responding simultaneously with the finger
and foot. On Stop trials, only the manual response was to be aborted;
the instructions emphasized that the foot response should be made
without hesitation. The participants were informed that it would not be
always possible to abort the manual response on Stop trials and that
they should avoid adopting a strategy of slowing down to increase the
likelihood of successfully stopping.

Participants were trained on 4 different days, with each type of stop
signal (Color or Tactile) used on 2 consecutive days. The order of
conditions was counterbalanced across participants. During each day,
they first performed two pure Go blocks of 32 trials each, containing
no stop signals. Following this, they completed 10 Selective-Stop
blocks, each composed of 60 trials (40 Go, 20 Selective Stop).

To further optimize the conditions for selective stopping, we
provided an incentive for participants to avoid delaying the foot
response on subsequent Selective-Stop trials. The mean foot RT from
the second of these pure Go blocks was used to establish a benchmark
for determining subsequent monetary bonuses. At the end of each
block, the mean foot RT was computed and displayed to the partici-
pant, along with the amount of money earned on that block based on
the following criteria. The participant received $1.00 if the mean foot
RT was faster than the benchmark, or $0.75, $0.50, $0.25, or $0.10 if
the RT was slower than the benchmark by less than 25, 50, 75, or 100
ms, respectively. To ensure that participants also attended to the stop
signals, the reward was only earned if they succeeded in stopping on
more than 25% of the Stop trials within the block.

Fig. 1. Selective stop-signal task procedure. The white arrow indicated if a
right foot movement should be made simultaneously with a keypress per-
formed with either the right or left index finger. On Stop trials, the arrow
turned red in the Color condition or the key under the index finger vibrated in
the Tactile condition after an individually adjusted stop-signal delay (SSD).
Only the manual response was to be aborted. On all trials, a keypress with the
right foot was required.
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Estimating the Cost Associated with Selective Stopping

Our focus is on the selective-stop cost, the increase in RT observed
for the invariant response on Selective-Stop trials compared with Go
trials. In previous studies using a selective-stop task, this difference
score has been taken to provide an estimate of the cost associated with
inhibiting one response of a multicomponent action (Coxon et al.
2007; Aron and Verbruggen 2008; Claffey et al. 2010; Majid et al.
2012; MacDonald et al. 2012). Indeed, the restart model was devel-
oped to account for this cost, attributing it to the operation of two,
sequential processes, the generation of a generic stop command that is
applied to all prepared responses, followed by the reprogramming of
the invariant response. By this view, the selective-stop cost provides
an estimate of the time required to restart the (transiently) disrupted
invariant response. The restart model is inconsistent with the horse-
race model, at least on successful Stop trials, because restarting a
planned response violates the independence assumption of the go and
stop processes in the horse-race model.

However, the comparison of RTs for the nonstopping effector on
Selective-Stop and Go trials, the measure used to assess the global

restart cost of selective inhibition, is biased. In the standard stop-
signal task, where a single response is prepared, RTs on trials in which
the participant fails to stop are assumed to reflect the faster half of the
RT distribution (Logan and Cowan 1984) (Fig. 2A). Indeed, this
assumption underlies the computation for estimating the stop-signal
reaction time (SSRT). In the selective-stop task, there is an overt
response on all Stop trials; in our experiment, this is the invariant
foot response. Because the manual and foot responses are coupled (see
RESULTS), and fast manual responses occur on some Stop trials (re-
gardless of the existence of a global restart cost), the foot RTs from
these failed Stop trials are primarily drawn from the faster half of the
overall RT distribution. Correspondingly, foot RTs from successful
Stop trials are primarily drawn from the slower half of the distribution.
Thus a measure of the cost associated with selective stopping that is
based on a comparison of foot RTs for successful Stop trials and Go
trials would be biased since the former is typically drawn from the
slower half of the full distribution. We refer to this as the sampling-
bias cost (Fig. 2B) since successful Stop trials constitute a biased
sample of foot RTs, even in the absence of a global restart cost.

Fig. 2. Horse-race model and the sampling-
bias hypothesis for the residual cost. A:
graphic illustration of the horse-race model
for stop-signal paradigm. The Go process
(black traces indicate accumulation function
for different trials, yielding Go RT distribu-
tion) is triggered after a Go cue (green cir-
cle) and accumulates over time. An inhibi-
tion process (red trace) is triggered after the
Stop cue (red stop sign). The outcome is a
successful stop when the inhibition process
offsets the Go signal (shown here when red
trace exceeds black trace, Go traces is
dashed), or failed stop if the Go process
reaches threshold first. RTs on failed Stop
trials are assumed to arise from the faster
half of the RT distribution. B: graphic illus-
tration of the sampling-bias hypothesis in the
selective-stop task. The blue trace indicates
the Go trace for the invariant foot response
on a successful Stop trial. Sampling-bias
cost results from the difference between the
medians of Successful Stop and Go RT dis-
tributions for the invariant foot responses. C:
graphic illustration of the restart model of
the stopping cost. The Go trace for the foot
response is transiently disrupted on success-
ful Stop trials, and then restarted after a short
delay (reprogrammed). The difference be-
tween the Successful Stop and Go RT dis-
tributions would include both the sampling-
bias and restart costs.
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An unbiased estimate of the cost in selective stopping requires
testing whether there is an additional increase in RT on successful
Stop trials, above and beyond the sampling-bias cost; this increase
would constitute a true restart cost (Cr) (Fig. 2C). Thus our analysis
focused on asking whether the observed RT cost (Cobs) is significantly
greater than the sampling-bias cost (Csb). This method provides an
unbiased test of the restart model. This approach is made possible by
the fact that the foot and hand RTs are highly correlated, allowing us
to directly assess the Successful Stop and Failed Stop RT distribu-
tions, even if the manual response is successfully withheld on Stop
trials.

Modeling costs in the selective-stop task. Here we give a formal
analysis of selective-stop behavior using a generic probabilistic model
that can account for both sampling-bias and restart costs.

Let X � x be the SSD, and T � tf be the foot RT. The trial

type is c � �0 if Go

1 if Stop
, and the participant’s response is

s � �0 if responded

1 if no response
. We define distributions for the foot RTs

on two different trial types as PGO(T � tf) (Go trials) and PSTOP(T � tf)
(Stop trials), where PSTOP can be subdivided to PFS (T � tf) (Failed
Stop trials) and PSS(T � tf) (Successful Stop trials) as follows:

PGO�T � tf� � P�T � tf�c � 0, s � 1�
PSTOP�T � tf� � P�T � tf�c � 1, X � x�
PFS�T � tf� � P�T � tf�c � 1, s � 1, X � x�
PSS�T � tf� � P�T � tf�c � 1, s � 0, X � x�

(1)

Each individual’s inhibition function for a given SSD is

Pinhibit � P�s � 0�c � 1, X � x, T � tf� � P .

If this inhibition function p is monotonically increasing, which is the
case when 1) the hand and foot RTs are correlated and 2) failed stops
are more likely on trials with faster RTs, it is guaranteed that Csb � 0.
As shown below, an estimate of the bias is critical for evaluating the
restart cost observed in selective stop-signal tasks. The foot RT
distribution for Stop trials is then

PSTOP�T � tf� � PFS * �1 � p� � PSS * p .

As x ¡ 0, Pinhibit ¡ 1, PSS(T � tf) ¡ PGO(T � tf). That is, when SSD
approaches zero, the participant should be able to successfully inhibit
the manual response on all Stop trials, and the foot RT distribution for
Stop trials will approach the foot RT distribution for Go trials.

A generic specification for the restart cost, Cr, can be given by

PSTOP�T � tf�
�PFS * �1 � p� � PSS * p

�P�TNoCr
�c � 1, s � 1, X � x� * �1 � p�

�P�TNoCr
� Cr�c � 1, s � 0, X � x� * p

(2)

In this formulation, Cr is assumed to be a constant. If Cr � 0, then, by
the horse-race model, PSS(T � tf) will be formed by samples from the
slower half the Go distribution. Alternatively, if Cr � 0, the Success-
ful Stop distribution PSS(T � tf) is shifted to the right (Fig. 2C). We
can then ask if the Stop foot RTs reflect samples from the same
distribution as the Go foot RTs, allowing us to test if the sampling-
bias cost, Csb fully accounts for the observed selective-stop cost (Fig.
2B), PSTOP(T � tf) � PGO(T � tf), or Cr � 0. Formally, we can define
the null hypotheses that the observed cost is equivalent to sampling
cost as:

Cobs � Csb � median�PSS� � median�PGO� (3)

Alternatively, if stopping introduces an extra restart cost, the Success-
ful Stop distribution for foot RTs (PSS) would be shifted to larger values
than the Go foot RTs (PGO) (Fig. 2C). Thus, the Stop and Go foot RT

distributions are not the same, PSTOP(T � tf) � PGO(T � tf), or Cr � 0.
In this case, the observed cost will be a combination of the sampling-bias
cost and restart cost:

Cobs � Csb � Cr � median�PSS� � median�PGO� (4)

Following Eq. 2, we can analytically examine Cr from the means of
Go and Stop distributions:

E�TSTOP�
�E�TFS� * �1 � p� � E�TSS� * p

�E�TSTOP_NoCr
�s � 1, c � 1� * �1 � p�

�E�TSTOP_NoCr
� Cr�s � 0, c � 1� * p

�E�TSTOP_NoCr� � Cr * p

(5)

For the hypothetical Stop RT distribution without restart cost, we
follow horse-race assumptions:

E�TSTOP_NoCr� � E�TGO�
yielding

Cr �
E�TSTOP� � E�TSTOP_NoCr�

P
�

E�TSTOP� � E�TGO�
P

(6)

This value of Cr can be estimated directly from the observed data.
The derivation described above is conditioned on a fixed SSD and

thus, this parameter is not included in the equations. The horse-race
model also has a strong assumption that the mean SSD will produce
a stop rate of 50%. While the staircase algorithm for updating SSD is
designed to produce this value, the observed values often deviate from
50%. We use two simulation approaches to address this issue and
directly model the sampling-bias and restart costs.

Modeling sampling-bias cost. We directly sampled from the ob-
served Go foot RT distribution for each participant and assigned them
to FS and SS samples using each individual’s inhibition function, p.
We then estimated Csb following Eq. 3. We recognize that there are
various ways in which we could model the inhibition function. We
chose to use logistic regression, such that Pinhibit � p* � logit�1 (�T)
is the probability of successfully stopping for a given RT on a Stop
trial. The calculations here were done on the observed individual data
sets, with separate functions computed for each of the four test
sessions (300 observations/data set). To generate a sample of foot RTs
(TGO), we fit the foot RT data from the Go trials with an ex-Gaussian
distribution (Ratcliff 1979; Ratcliff and Murdock 1976) and resa-
mpled 1,000 times from this distribution (see Lacouture and Cous-
ineau 2008). Using the function p* obtained from logistic regression
on the behavior data, each sample was classified as Successful Stop
RT (TSS) or a Failed Stop RT (TFS). From the distributions formed by
these samples, we estimated the sampling-bias cost following Eq. 3.

Figure 3 illustrates simulations of the null (no restart cost) and
alternative (with restart cost) hypotheses under consideration. In each
case, we simulated one data set and ran the modeling procedure 1,000
times to establish a confidence interval (CI) for the modeled sampling-
bias cost, Csb. In Fig. 3, A–D, the TSS and TGO trials are sampled from
the same distribution, given the null hypothesis that there is no restart
process. In this scenario, the modeled sampling-bias cost should fully
account for the behavioral cost. In Fig. 3, E–H, the TSS trials come
from a different distribution due to the restart process. Here the
sampling-bias cost will not fully account for the observed cost.

Modeling restart costs. We modeled the restart cost by sampling
1,000 trials with replacement from the observed Go and Stop distri-
butions for each individual. This procedure was performed separately
for each day and condition. We then computed the restart cost, Cr,
using Eq. 6 for the sampled data set, where the stop rate, p, was taken
directly from the observed data. As with the procedure to estimate the
sampling-bias cost, this procedure was repeated 1,000 times to obtain
95% CIs for the simulated restart cost (see below).
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Bootstrapping to construct CIs of the model’s predictions. To
access the accuracy and robustness of the model, we generated 1,000
hypothetical data sets, each composed of data from 10 hypothetical
participants by nonparametric case sampling with replacement from
our observed 10 participants. We then performed the model simula-
tions for each simulated participant to generate a distribution of the
group mean cost values at the population level. We compared the
simulated sampling-bias and restart costs from these 1,000 hypothet-
ical participants with the observed costs.

RESULTS

Behavioral Data

Trials in which the RTs for the finger and foot responses
were �100 ms apart were considered desynchronization errors.

Most of these occurred during the first few blocks of training
and were rare in later blocks (�1% in both Color and Tactile
conditions). To further verify that the participants followed
instructions to synchronize their response on Go trials, we
calculated the correlation between the RTs for the two re-
sponses. In the Tactile condition, the mean correlations were
0.77 (SD � 0.13) and 0.78 (SD � 0.14) for the left hand/foot
and right hand/foot trials. In the Color condition, the compa-
rable values were 0.76 (SD � 0.15) and 0.76 (SD � 0.19).
Participants maintained a high level of accuracy on the choice
reaction time task, with Go trial accuracy at 96% across the
entire experiment (SE � 0.003).

A summary of the RT data and measures of stop-signal per-
formance is presented in Table 1. RTs were generally faster than

A B C D

E F G H

Fig. 3. Simulations to illustrate how increase in reaction times (RTs) on Selective-Stop trials could arise solely from sampling bias (A–D) or due to the operation of a
restart process invoked following the transient disruption of the response by the stop signal (E–H). A and E: Simulated Go, Failed Stop (FS), and Successful Stop (SS)
Foot RT data using ex-Gaussian distributions. B and F: inhibition function Pinhibit � p* � logit�1 (�T) using logistic regression (see MATERIALS AND METHODS) to fit
the FS and SS data sets shown in (A and E). C and G: ex-Gaussian fits of a new set of Bisset samples drawn from the Go distribution in A and E, and FS and SS
distributions classified using the stopping function in C and F. D and H: cost in the simulated data (A and E) compared with the modeled Sampling-Bias cost.

Table 1. Behavioral results for the training experiment

Color Tactile

Day 1 Day 2 Day 1 Day 2

Go RT hand, ms 319 (15.23) 296 (11.51) 309 (21.59) 276 (11.91)
Foot, ms 344 (19.62) 315 (15.04) 332 (20.12) 302 (12.64)
Failed Stop RT hand, ms 290 (10.64) 272 (10.41) 279 (13.79) 256 (8.54)
Foot, ms 327 (14.03) 303 (13.47) 309 (12.83) 288 (10.46)
SSD, ms 106 (13.30) 88 (6.49) 106 (11.42) 92 (6.32)
SSRT, ms 213 (8.77) 208 (9.70) 204 (12.70) 184 (8.79)
Percent successful stop 0.38 (0.03) 0.38 (0.02) 0.39 (0.02) 0.38 (0.02)

Mean (SE) hand and foot reaction time (RT) for go and failed stop trials, stop-signal delay (SSD), stop-signal reaction time (SSRT), and percentage successful
stop; n � 10.
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the values reported in previous stop-signal studies (e.g., Logan et
al. 1984; Badry et al. 2009; Cai et al. 2011, 2012; Greenhouse et
al. 2012; Majid et al. 2012). We analyzed the RT data with a
repeated-measures ANOVA that included the factors Signal Type
(Color/Tactile), Effector (hand/foot), RT Type (Go/Failed Stop),
and Day. Foot RTs were slower than manual RTs, [F(1,9) �
17.31, P � 0.005, effect size �p

2 � 0.66], but the mean difference
was only 28 ms (SE � 6.6), consistent with the fact that the two
responses were initiated in a synchronized manner. Mean RTs
were relatively fast and improved over the 2 days of training
[F(1,9) � 10.30, P � 0.05, effect size �p

2 � 0.53; foot data
shown in Fig. 4A]. RTs were also faster on Failed Stop trials
compared with Go trials [F(1,9) � 32.15, P � 0.001, effect size
�p

2 � 0.78]. The effect of Signal Type was not reliable [F(1,9) �
1.03, P � 0.34, effect size �p

2 � 0.10].

The percentage of successful stops averaged 38%, a value
less than the target rate of 50%. We assume the lower rate was
due, in part, to the difficulty associated with selectively stop-
ping one movement within a compound response, especially
given our monetary incentive system. Nonetheless, the fact that
successful stop rates were consistent across days and condi-
tions, whereas RTs were reduced over training, indicates that
participants were clearly attentive to the stop signals for the
manual responses.

We estimated SSRT according to the assumptions of the
horse-race model, defined as the difference between the me-
dian of the Go RT distribution and the mean of the SSD (Logan
and Cowan 1984; Band et al. 2003). The SSD averaged 98 ms
(SE � 7), and a repeated-measures ANOVA of Signal Type vs.
Day showed that SSD did not differ between the Color and
Tactile conditions [F(1,9) � 0.04, P � 0.84, effect size �p

2 �
0.005] nor vary across days [F(1,9) � 3.88, P � 0.08, effect
size �p

2 � 0.30]. Similarly, the SSRT tended to be faster after
the tactile stop signal and showed a reduction across days, but
only the effect of Day was significant [Signal Type: F(1,9) �
2.35, P � 0.16, effect size �p

2 � 0.21; Day: F(1,9) � 4.76,
P � 0.06, effect size �p

2 � 0.35].
The main data of interest were the RTs for the invariant foot

response (foot RT), comparing when this response was pro-
duced in combination with a manual response (Go trials) to
when this response was produced alone because the manual
response was aborted (Successful Stop trials). These data were
analyzed with a repeated-measures ANOVA with the factors
Signal Type (Color/Tactile), RT Type (Go/Successful Stop),
and Day (1/2). The effect of Signal Type was not significant
[F(1,9) � 1.02, P � 0.34, effect size �p

2 � 0.10]. As can be
seen in Fig. 4A, the foot RTs decreased over the 20 blocks for
both the Color and Tactile conditions, a pattern that is reflected
by the significant effect of Day [F(1,9) � 19.29, P � 0.005,
effect size �p

2 � 0.68]. Moreover, in both conditions, the foot
RTs were slower on successful Selective-Stop trials compared
with Go trials [F(1,9) � 28.61, P � 0.001, effect size �p

2 �
0.76], the standard signature of a selective-stopping cost
(Coxon et al. 2007; Majid et al. 2012; Aron and Verbruggen
2008). There was also a significant interaction between RT
Type and Day [F(1,9) � 12.72, P � 0.01, effect size �p

2 �
0.59], indicating that the selective-stopping cost was reduced
with training (see below).

The difference between the foot RTs on Successful-Stop and
Go trials is used to estimate the observed selective-stop cost.
To evaluate how this cost was influenced by the manner in
which the stop signal was cued as well as by practice, we
performed a two-way repeated-measures ANOVA with the
factors Signal Type and Day on the difference scores (RT
cost). The cost was numerically larger for the Color stop signal
(67 ms, SE � 15 ms) compared with the Tactile-stop signal (42
ms, SE �10 ms), but the effect was not reliable [F(1,9) � 2.73,
P � 0.13, effect size �p

2 � 0.23]. The selective-stop cost was
reduced with practice in the 2 days [F(1,9) � 12.72, P � 0.01,
effect size �p

2 � 0.59], dropping from 67 ms (SE � 12) on
Day 1 to 41 ms (SE � 9) on Day 2. The interaction of these
two factors was not reliable [F(1,9) � 0.14, P � 0.71, effect
size �p

2 � 0.02] Because only the right foot was used in the
task, we separated the left and right hand trials to examine if
there was any difference between trials involving same-side
responses and trials involving different-side responses. We
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Fig. 4. RTs for the invariant foot response and selective-stopping costs. A: foot
RTs by block. B: solid gray bars indicate stopping cost when calculated as foot
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bootstrapping distributions.
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analyzed the cost data using a three-way repeated-measures
ANOVA with the factors Side, Signal Type, and Day. There
was no significant effect of Side [F(1,9) � 0.009, P � 0.93,
effect size �p

2 � 0.001], nor did it interact with any of the
other factors.

Importantly, the size of the cost is significantly greater than
zero for both signal types, even during the second day {col-
lapsed over signal types: t(19) � 4.438, P � 0.001, 95% CI
[22, 61]}. Based on this analysis, one would conclude that
selectively stopping one movement within a compound re-
sponse imposes a cost on the invariant response no matter
what, a central assumption of the restart model. However, we
show in the following section that this is not the case.

Modeling Results

As described in MATERIALS AND METHODS, a comparison be-
tween foot RTs on successful Stop and Go trials is biased since
the former is composed mostly of the slower half of the full RT
distribution. Given this, we used the stop probability functions
and foot Go RT (TGO) distributions for each participant to
estimate both the magnitude of this bias and the restart cost.
We compared these estimates to the observed costs.

Using a bootstrapping procedure, we modeled the sampling-
bias and restart costs predicted by the selective-stop model for
the two types of stop signals for each day (Fig. 4B). A two-way
repeated-measures ANOVA of Signal Type 	 Day on the
restart cost data yielded a main effect of Signal Type [F(1) �
8.55, P � 0.05]. Although there was a trend for the restart cost
to be reduced across the two sessions, this effect as not reliable
[F(1) � 1.58, P � 0.24].

For the Color condition, the difference between the observed
costs and modeled sampling-bias costs was significantly dif-
ferent on both days [Day 1: t(9) � 4.44, P � 0.005; Day 2:
t(9) � 2.27, P � 0.05]. A two-way repeated-measures
ANOVA of Data Type (sampling-bias vs. observed cost) 	
Day showed a significant main effect of Day [F(1) � 9.35, P �

0.05]. Thus, while although training reduced the restart cost,
the sampling bias does not fully account for the observed cost
even on Day 2, consistent with the idea that there is a restart
process on successful Stop trials in this variant of a selective-
stop task. This conclusion was also supported by the observa-
tion that the restart costs fall greater than zero when 95% CIs
are constructed by bootstrapping (Cr intervals: Day 1 95% CI
[25, 78]; Day 2 95% CI [10, 57]).

For the Tactile condition, the difference between the ob-
served and modeled sampling-bias costs was marginally sig-
nificant on Day 1 [t(9) � 2.22, P � 0.053] but not on Day 2
[t(9) � 0.92, P � 0.38]. Moreover, the ANOVA here revealed
a significant effect of Day [F(1) � 7.40, p � 0.05] and the 95%
CIs for the restart costs span zero on both days (Cr intervals:
Day 1 95% CI [�8, 26]; Day 2 95% CI [�11, 23]). Thus, if we
were to repeat the same experiment in the population, partic-
ipants should be able to successfully abort one component of a
planned action in the Tactile condition by the second day
without a corresponding cost in a second component of that
action.

To examine how the observed costs may arise from the
sampling bias, we examined the modeled results for each
individual (Fig. 5). On Day 2, the observed cost fell within the
upper bound of the 95% CIs of the modeled sampling-bias
costs for three participants when the stop signal was visually
cued and for six participants when the tactile cue was used as
the stop signal. Thus, with just 2 days of training, a consider-
able number of participants were able to produce the foot
response independent of whether they were simultaneously
initiating or aborting a planned manual response.

DISCUSSION

The difficulty people have in selectively stopping one move-
ment within a multicomponent action has been taken to imply
that this form of inhibitory control operates in a relatively
generic manner, one that targets all potentiated actions (De
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Jong et al. 1995; Coxon et al. 2007; MacDonald et al. 2012;
Majid et al. 2012; Aron and Verbruggen 2008; Greenhouse et
al. 2012; Cai et al. 2012). A restart process would be required
to offset this generic inhibition, resulting in delays on Selec-
tive-Stop trials (Coxon et al. 2007; MacDonald et al. 2012).
The notion of a structural constraint that results in relatively
generic response inhibition is consonant with neurobiological
models that emphasize cortico-basal ganglia networks and in
particular the hyperdirect projection to the subthalamic nucleus
(STN) (Aron and Poldrack 2006; Aron et al. 2007). While there
is evidence of some degree of functional specialization and
somatotopy within the STN (Greenhouse et al. 2011; Nambu et
al. 1996), the relatively small size and divergent projections
from the STN to the output nuclei of the basal ganglia (Parent
and Hazrati 1995) would suggest that this network is unlikely
to be recruited to abort selective components of ongoing
actions.

The results of the present experiment and modeling are at
odds with the hypothesis that the termination of a planned
response always involves the generation of generic inhibitory
signals. With a modest degree of training, financial motivation,
and a salient cue (tactile), people were able to selectively
inhibit one movement within a multicomponent action without
any cost on an invariant response. This indicates a degree of
flexibility in the inhibitory control of movement. Our modeling
work here suggests that the “restart cost” observed in many
previous studies of selective stopping (e.g., Coxon et al. 2007)
may be the result of a statistical artifact inherent in the standard
way of assessing this cost.

Reliability of the Selective-Stop Model

As with any modeling approach, it is important to con-
sider how the predictions of the model are sensitive to
different parameters. To model the sampling-bias cost, three
parameters are relevant, the means, variances, and skewness
of the RT distributions for the foot on Go (PGO) and
Successful Stop (PSS) trials. The restart hypothesis assumes
that these two distributions are statistically independent. If
the PSS and PGO samples are not from the same distribution,
the horse-race model must be violated (as illustrated in the
simulation in Fig. 3E).

It is important to also consider how assumptions of our
model of selective stopping might influence the estimates of
the restart cost. We note that if we fix the parameters of the
PGO distribution, the observed sampling cost will correlate
with the mean of the PSS distribution. This is a potential bias in
estimating the sampling-bias cost since the modeled cost could
be inflated if the mean of the PSS is contaminated by restart
values in the real data. However, this potential should not
affect the utility of the model for assessing restart costs. The
PSS samples are taken solely from the PGO distribution and this
distribution would not contain trials with a restart cost. Thus,
even if the Stop trials might be contaminated by restart costs,
and, as a result, p* would be affected by restart process, our
procedure nevertheless partitions an unbiased distribution. In
fact, in the event of this occurring, the modeled cost is
guaranteed to have an upper bound that is less than the
observed cost (Fig. 3G), allowing us to use the model to test the
restart hypothesis.

The variances (�) and skewedness (	) in the PGO and PSS
distributions also affect the modeled cost. When the PGO distri-
bution is held constant, increased � in the PSS and/or PFS
distributions will result in an underestimate of the modeled
sampling-bias cost: as � increases, the inhibition function
becomes shallower, with greater intermixing of samples from
the PFS and PSS distributions, resulting in a smaller difference
between the medians of the PGO and PSS means. However, this
scenario is rare in real data since the variances of the PSS and PFS
distributions are larger than the PGO distribution. As such, vari-
ances of PFS and PSS in the model are less likely to be inflated.

The more interesting case concerns skewedness (	) in the
PSS distribution. When other parameters are held constant,
increased 	 results in a larger observed cost but a relatively
stable and small estimate of the sampling-bias cost. This is
what might be expected if there is a mixture of global and local
inhibitory processes, where the PSS distribution has a long tail
due to a restart delay in a (small) percentage of the trials. Our
modeling approach accurately captures this phenomenon.

In the current implementation, we chose to use individual-
ized inhibition functions. The advantage of this approach is
that it bypasses the assumption of a fixed 50% stopping rate.
While the staircase algorithm is set to achieve a 50% stopping
rate, the observed data may not match this value (e.g., Cai et al.
2011; Majid et al. 2012), an outcome present in the current data
set. Because of the potentially existing restart cost in the real
data, this approach might result in the higher mean value for
PSS and, therefore, a larger estimate of the SSRT in the
simulated results. As such, the model’s prediction of the
sampling-bias cost would be biased towards a larger value.
This scenario arises because the inhibition function used for
classifying the RTs may be shallower if there is a “restart cost”
in the real data. This would polarize the means of the sampled
PSS and PFS distributions and introduce longer tails to these
two distributions (also resulting in a smaller SSD or larger
SSRT, see Band et al. 2003). Note that, here again, the
horse-race model is violated with some restart cost contami-
nating the RT distribution. More trials will be labeled Failed
Stop rather than Successful Stop, and the Successful Stop
samples will be shifted toward the right tail of the PGO
distribution (Fig. 3G). The net result is that the sampling-bias
cost is slightly overestimated. However, as noted above, this
issue does not affect the utility of the model for discriminating
between the restart hypothesis and the sampling-bias hypoth-
esis given that the samples are taken solely from the PGO
distribution. Moreover, this guarantees an upper bound of the
modeled sample-bias cost based on the variance of the original
full PGO distribution.

To fully explore the “contamination” issue, we conducted
two additional analyses in which we used the stopping rate for
each individual and their mean SSD 
 SSRT to define the
cut-off values for the PGO distribution. These values were used
to classify the sampled data as failed or successful stops. The
results from these approaches were similar to those obtained
from the initial model. For example, the observed cost was not
reliably different than the modeled sampling-bias cost on either
day in the Tactile condition, although the difference was
marginal on Day 1 [SSD 
 SSRT model: t(9) � 1.94, P �
0.08 for Day 1, and t(9) � 0.63, P � 0.54 for Day 2; stop-rate
model: t(9) � 1.76, P � 0.11 for Day 1, and t(9) � 0.09, P �
0.93 for Day 2]. For the Color condition, this difference was
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only reliable on Day 1 [SSD 
 SSRT model: t(9) � 3.24, P �
0.05 for Day 1, and t(9) � 1.58, P � 0.15 for Day 2; stop-rate
model: t(9) � 4.23, p � 0.005 for Day 1, and t(9) � 2.32, P �
0.05 for Day 2].

Models of Selective Stopping

Our task entailed a simultaneous selective-stop method in
which one component of a complex response is aborted on
Stop trials (e.g., Coxon et al. 2007; Aron and Verbruggen
2008; Claffey et al. 2010; MacDonald et al. 2012). Selective
stopping has been examined in other tasks in which the stop
signal is only relevant for a subset of the stimuli. In the
conditional selective-stop task, one member of the stimulus-
response set is designated as the critical stimulus for the entire
block of trials, with participants instructed to respond to stop
signals only on trials with this stimulus (De Jong et al. 1995;
Aron et al. 2007; Swann et al. 2009; Jahfari et al. 2010;
Greenhouse et al. 2012). In the precued selective-stop task, the
critical stimulus is cued before the onset of the go signal and
may vary across trials (Aron and Verbruggen 2008; Claffey et
al. 2010; Cai et al. 2011; Swann et al. 2012, 2013; Majid et al.
2012, 2013). When comparisons are made (in most cases,
across studies), the restart costs tend to be the largest in the
simultaneous selective task compared with the other two (e.g.,
Aron and Veruggen 2008).

These differences likely reflect the fact that these three
selective-stop tasks impose different demands on cognitive
control operations and online processing. In simultaneous se-
lective stopping, the participant presumably adopts a similar
set for all stimuli since the stop signal is treated similarly on all
trials. Moreover, the recruitment of inhibitory processes is
likely delayed until the onset of the stop signal, especially in a
version such as ours where monetary bonuses depend on the
RT of the nonstopped response (e.g., the foot). In contrast, in
the conditional stopping task, the critical stimulus is fixed
throughout the experiment and in the precued selective-stop-
ping task, the critical stimulus is identified prior to the onset of
the trial. Thus, in these two tasks, the participant can adopt a
differential set towards the stimulus alternatives; for example,
the criterion for responding to the critical stimulus may be
different than that applied to the noncritical stimulus. Indeed,
RTs on Go trials in which a stop signal might occur (e.g.,
critical stimulus) are slower than on Go trials in which a stop
signal will not occur (e.g., noncritical stimulus) (De Jong et al.
1995; Aron et al. 2007; Jahfari et al. 2010; Greenhouse et al.
2012; Swann et al. 2012, 2013). We expect that the restart cost
could also be eliminated in these other conditions with training
and/or the use of a salient stop signal, although this prediction
remains to be tested.

Bissett and Logan (2014) recently proposed that stop-signal
tasks should be viewed in terms of whether inhibition can be
directed at perceptual or motor stages of processing. In their
view, with cueing tasks (either by block or trial-by-trial), the
cue specifies whether a stop signal is relevant (i.e., requires
attempting to abort a planned response) or irrelevant (i.e., can
be ignored). Selection here, and perhaps inhibition of selected
items, can be perceptually based: If the stimulus is not the
critical one, then there will be no need to attend to stop signals.
In contrast, with simultaneous selective-stopping tasks, selec-
tion for inhibition is shifted towards motor stages since the stop

signal likely comes after selection of the response. While we
recognize that the perception vs. motor distinction is surely
blurred, simultaneous selective tasks such as that used here
seem most appropriate for testing the restart hypothesis. A key
assumption of the hypothesis is that a selected response is
transiently disrupted by the stop signal.

Psychological Sources of Selective-stop Costs

Several models for aborting a planned response have been
proposed. At a taxonomic level, there are three main types of
models: 1) single-process models that entail global inhibition,
2) dual-process models in which inhibition can either be global
or selective, and 3) single-process models that entail selective
inhibition.

The single-process, global inhibition model postulates that
control signals deployed to abort an initiated action are rela-
tively generic. The advantage of this form of control is that it
can be implemented in a rapid manner (e.g., along the hyper-
direct pathway of the STN, see Coxon et al. 2007). The cost,
however, is that there is a transient, generic disruption of all
on-going responses.

The dual-process model is similar to that proposed by De
Jong et al. (1995), with the core idea that the form of the
control signal will be context dependent. Global mechanisms
are recruited when the situation benefits from the utilization of
generic commands; selective mechanisms are recruited when
inhibitory commands must be targeted to specific components
of an action. Based on EEG data, De Jong et al. suggested that
global signals arise along a cortico-subcortical pathway that
operates quickly, albeit at a cost of specificity, whereas selec-
tive signals are slower and depend on interactions that are
purely cortical. The results of the current study underscore that
stop signals can be selective. It remains to be seen if selectively
aborting one component of a planned action is inherently
slower than aborting the entire action and whether the two
processes rely on different neural pathways. Our results indi-
cate that with training and appropriate task segregation, people
may prove to be equally facile in both conditions.

The third class of models is based on the idea that there are
no global control signals; by this view, all control signals have
some degree of specificity, and the fidelity of these signals can
be modified by training and task conditions. Within the frame-
work of the stop signal task, the argument would be that the
control processes are capable of directing their output in a
selective manner. This hypothesis is consistent with the suc-
cessful elimination of restart costs with training in the current
experiment, a result that was only evident when the data were
analyzed to account for the sampling-bias cost. By this class of
models, signatures of global inhibition such as selective-stop-
ping costs result from a failure to segregate the different
components of a complex action, rather than some structural
constraint of the control signals. Evidence of generic inhibi-
tion, either from transcranial magnetic stimulation studies (e.g.,
Badry et al. 2009; Cai et al. 2012; Greenhouse et al. 2012) or
neuroimaging studies (e.g., Majid et al. 2013), may reflect the
simplicity of experimental tasks that favor aborting the entire
action rather than invoke targeted inhibition.

Our results lead us to reject the hardwired restart model as an
obligatory manner in which people respond in selective-stop
tasks. This raises the question of why selective-stop costs are
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generally observed and why training and stop-signal saliency
might reduce these costs. We propose that stop-signal tasks can
be viewed as a type of dual task, one in which the second
stimulus/task requires that the action associated with the first
stimulus/task be counteracted. In the selective-stop task, the
stop command has an additional task demand in which one
response must be sustained while the other is inhibited. The
selective-stopping cost may reflect an assignment problem
(Duncan 1977; Ivry et al. 1998). The participant must detect
the stop signal and then rapidly assign the stopping operation
to one of two activated responses. By this view, the stronger
compatibility of the tactile stimulus and the to-be-aborted
response could account for the fact that participants showed
lower residual costs for tactile stop signals. Further support for
this idea comes from studies showing the performance on
stop-signal tasks is influenced by the degree of congruency
between the stop signal and the targeted response for inhibition
(Claffey et al. 2010; Kramer et al. 1994; Verbruggen et al.
2004).

In the current study, training not only reduced RTs on Go
trials but also reduced the SSRT and residual stopping cost. We
assume that training increases the separation between the
manual response that may be aborted and the invariant foot
response, an effect likely enhanced by our monetary incentives.
This effect is similar to that observed in studies where practice
effects can abolish all dual-task costs, at least when there is
some degree of congruency between the stimulus and response
sets (e.g., Schumacher et al. 2001; Hazeltine et al. 2002). These
effects further argue against the idea that the constraints asso-
ciated with selective stopping are structural in nature. We
expect that, given enough training, the restart-cost in the Color
condition would also reduce to zero as participants develop
automaticity in not only isolating the invariant foot response
but also in assigning the visual stop signal to the targeted
response.

Conclusion

The experiment and modeling results presented here dem-
onstrate that people can selectively inhibit a specific compo-
nent of an on-going action. These findings argue against
models in which aborting a planned action under speeded
constraints is dependent on the operation of a structural control
process, one that produces a generic inhibitory signal. Rather,
the results point to a softer set of constraints, ones that reflect
more general properties of our cognitive architecture.
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