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a b s t r a c t

Patients with basal ganglia (BG) pathology are consistently found to be impaired on rule-based category
learning tasks in which learning is thought to depend upon the use of an explicit, hypothesis-guided
strategy. The factors that influence this impairment remain unclear. Moreover, it remains unknown if
the impairments observed in patients with degenerative disorders such as Parkinson’s disease (PD) are
also observed in those with focal BG lesions. In the present study, we tested patients with either focal BG
lesions or PD on two categorization tasks that varied in terms of their demands on selective attention and
working memory. Individuals with focal BG lesions were impaired on the task in which working memory
demand was high and performed similarly to healthy controls on the task in which selective-attention
demand was high. In contrast, individuals with PD were impaired on both tasks, and accuracy rates did not
trategy
xplicit
lassification

differ between on and off medication states for a subset of patients who were also tested after abstaining
from dopaminergic medication. Quantitative, model-based analyses attributed the performance deficit
for both groups in the task with high working memory demand to the utilization of suboptimal strategies,
whereas the PD-specific impairment on the task with high selective-attention demand was driven by the
inconsistent use of an optimal strategy. These data suggest that the demands on selective attention and
working memory affect the presence of impairment in patients with focal BG lesions and the nature of

ts wi
the impairment in patien

The role of the basal ganglia (BG) in category learning has been
he subject of considerable study. Patients with BG pathology such
s Parkinson’s disease have been found to be impaired on category
earning tasks, but the underlying nature of the deficit has not been

ell-characterized. Two consistent findings stand out in this litera-
ure. First, BG dysfunction impairs learning on rule-based, category
earning tasks—i.e., categorization tasks where learning entails the
se of an explicit, hypothesis-guided strategy (see Ashby & Maddox,
005; Price, Filoteo, & Maddox, 2009; Seger, 2008 for reviews). Sec-
nd, the magnitude of this impairment is related to the demands
n selective attention (Filoteo, Maddox, Ing, & Song, 2007; Filoteo,
addox, Ing, Zizak, & Song, 2005).
The results of these neuropsychological studies fit well with a

umber of neurocomputational models that emphasize the role of

he BG in category learning (e.g., Ashby, Alfonso-Reese, Turken,

Waldron, 1998; Frank, 2005; Moustafa & Gluck, in press). For
nstance, the COVIS model of Ashby and colleagues posits that

hypothesis-testing system that involves working memory and

∗ Corresponding author. Tel.: +1 207 581 037;fax: +1 207 581 6128.
E-mail address: shawn.ell@umit.maine.edu (S.W. Ell).
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th PD.
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cognitive control processes is specialized to mediate learning in
rule-based tasks. In the current instantiation of the model, the cau-
date nucleus plays a critical role in maintaining the current rule
and dopamine facilitates the selection and modification of rules in
response to corrective feedback.

The neuropsychological evidence in support of BG-based com-
putational models of category learning comes, predominantly, from
studies involving patients with Parkinson’s disease (PD). An alter-
native approach is to evaluate the performance of individuals
with focal lesions of the BG. While the number of such studies
is small, the results have shown that these patients are impaired
on rule-based categorization tasks (Ell, Marchant, & Ivry, 2006;
Keri et al., 2002; Swainson & Robbins, 2001). No studies, how-
ever, have directly compared the performance of patients with
focal BG lesions and patients with PD on the same set of rule-
based, category learning tasks. One goal of the present study was
to systematically investigate the performance of patients with focal

basal ganglia lesions, comparing them to patients with PD on rule-
based categorization tasks. Given the importance of dopamine in
neurocomputational models of rule-based category learning, we
also investigated the extent to which PD patient performance is
dependent upon dopaminergic medication.

dx.doi.org/10.1016/j.neuropsychologia.2010.06.006
http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:shawn.ell@umit.maine.edu
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Fig. 1. Scatterplot of the stimuli in the (A) unidimensional and (B) conjunction tasks. Each point represents a single stimulus. Category A exemplars are plotted as black
c undar
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ircles and Category B as gray squares. The solid lines are the optimal decision bo
counterbalanced across the two tasks) were used: lines varying across trials in len
rom the unidimensional task for (C) lines varying in length and orientation and (D

Comparing multiple models of BG dysfunction has several
dvantages compared to focusing on a single patient group. Degen-
rative disorders such as PD are not pure models of BG dysfunction.
lthough the dopamine depletion that results from PD is thought to
ccur earlier and be most extensive in the BG, prefrontal dopamine
s also reduced in PD (Agid, Ruberg, Dubois, & Pillon, 1987). Further-

ore, PD directly affects other neurotransmitter systems as well as
ther subcortical regions (e.g., Braak et al., 2003). Focal BG lesions
rovide a model in which the pathology can be more precisely char-
cterized. This also entails its own costs: the pathology is limited
o a single hemisphere, raising the possibility that the intact hemi-
phere might prove sufficient for performance or compensate for
he damaged basal ganglia. In addition, the size and location of the
amage will vary across participants. Nonetheless, testing different
odels of BG dysfunction allows an assessment of whether task-

pecific impairments are a general feature of BG dysfunction or,
lternatively, associated with one form of pathology.

In the present paper, we focus on the effect of BG dysfunction
n rule-based, category learning tasks that vary in terms of their
emands on selective attention. More specifically, the tasks vary in
he extent to which they require the participant to ignore irrelevant
nformation (i.e., decisional selective attention, see Maddox, Ashby,

Waldron, 2002). Consider, for example, stimuli that vary con-
inuously along two dimensions. A categorization task with high
emands on selective attention would require the participant to
ttend to a relevant stimulus dimension and ignore an irrelevant
timulus dimension as is the case with the unidimensional task
n Fig. 1A. Optimal performance on this task requires learning the
ecision criterion on dimension 1 while ignoring irrelevant vari-
tion on dimension 2. In contrast, the conjunction task in Fig. 1B
laces low demands on selective attention because both dimen-
ions are relevant for successful performance.

In addition to varying the demands on selective attention, the

nidimensional and conjunction tasks may also vary in terms of the
emand on working memory (Maddox, Filoteo, Hejl, & Ing, 2004).
uccessful performance on the unidimensional task requires the
articipant to learn a single decision criterion. In contrast, success-
ul performance on the conjunction task requires the participant
ies. In order to minimize carry-over effects between the tasks, two sets of stimuli
d orientation, or lines varying in brightness and vertical position. Example stimuli
varying in brightness and vertical position.

to learn two decision criteria. Thus, relative to the unidimensional
task, the conjunction task is thought to place greater demand on
working memory because of the increased number of decision cri-
teria (e.g., Filoteo et al., 2007).

The current literature reveals a mixed picture in terms of a com-
parison between the effects of PD and focal BG lesions on rule-based
categorization tasks. As shown in previous studies, PD patients are
impaired on unidimensional, categorization tasks, perhaps due to
a deficit in selective attention (Ashby, Noble, Filoteo, Waldron, &
Ell, 2003; Filoteo, Maddox, Ing et al., 2005; Filoteo et al., 2007). In
contrast, they perform similar to matched controls on conjunction
tasks (Filoteo et al., 2007). Focal BG lesion patients have been shown
to be impaired on a four-category version of the conjunction task
(i.e., the stimuli in the four quadrants in Fig. 1B were assigned to four
contrasting categories, Ell et al., 2006); thus, we might predict that
they would also be impaired on the current conjunction task. This
population has not been tested on a unidimensional categorization
task, and the existing empirical literature precludes a strong pre-
diction given the heterogeneity in methodology and results across
previous studies. Current neurocomputational models, in contrast,
predict a more general pattern of impairment resulting from PD
and focal BG lesions (e.g., Ashby et al., 1998; Frank, 2005; Moustafa
& Gluck, in press).

The PD literature is further complicated by the fact that
performance on many cognitive tasks is modulated by the partici-
pants’ dopaminergic medication state (e.g., Cools, Barker, Sahakian,
& Robbins, 2001; Jahanshahi, Wilkinson, Gahir, Dharminda,
& Lagnado, 2010). Given the prominent role of dopamine
in neurocomputational models of rule-based category learning
dopaminergic medications would be expected to influence learn-
ing on rule-based tasks. In COVIS, for example, dopamine is critical
for rule selection and switching. The ability to flexibly imple-
ment rules should be important for rule-based categorization: for

example, an initial hypothesis may need to be altered based on
feedback. These considerations led us to evaluate the effects of
dopaminergic medication on rule-based category learning tasks
by testing a subset of PD patients in both on and off medication
states.
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Fig. 2. Lesion reconstruction (in white) for five of the patients with focal lesions of the basal ganglia, presented on 11 axial slices corresponding to Talairach coordinates of
−24, −16, −8, 0, 8, 16, 24, 32, 40, 50, and 60 mm. The striatum (putamen and caudate) is present in sections −8 through 24; the globus pallidus in sections −8 through 16.
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igures were generated with the MRIcro software package (Rorden & Brett, 2000) u
btain access to a digital copy of the scan for one patient, BG01.

. Method

.1. Participants and design
Six patients (one female) with unilateral damage to the BG resulting from
troke were tested. The patients were recruited from the VA Medical Center in
artinez, CA. The lesion was restricted to the left side for four of the patients

nd to the right side in the other two patients. Lesion reconstructions for five of
he patients are presented in Fig. 2. We were unable to obtain access to a digi-
rocedures described in (Brett, Leff, Rorden, & Ashburner, 2001). We were unable to

tal copy of the scan for one patient (BG01). The pathology was centered in the
BG, with evidence of putamen involvement in all six patients. The lesion also
included the caudate for one patient (BG01). The lesions extended into white matter

(internal, external, and extreme capsules) for some of the patients, insular cortex
in one patient (BG11), and thalamic nuclei in two patients (BG01, BG12). Test-
ing was conducted at least 12 months after the time of stroke, and for most of
the patients many years post-stroke (average interval = 6.7 years, SD = 8.1). Five
of the six BG patients participated in a prior study on a related topic (Ell et al.,
2006).
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Table 1
Participant demographic information and neuropsychological assessment.

CO BG PD

M SD rUD rCJ M SD rUD rCJ M SD rUD rCJ

Age (years) 65.1 7.5 −.31 −.10 61.2 11.5 −.11 −.66 63.7 10.7 .01 −.39
Education (years) 15.3 2.4 −.03 .23 14.0 3.2 −.02 .24 14.6 2.9 −.23 −.17
IQ* 122.9 4.6 .17 .26 112.0 9.8 .52 .25 122.3 9.7 .11 −.32
Spatial span backward (raw) 7.5 1.6 −.03 .19 6.8 2.6 −.09 .40 6.9 1.9 −.37 −.21
Digit span backward (raw)† 8.0 2.2 −.04 .28 6.3 1.8 .45 .27 6.4 1.9 .49 −.32
CWI: inhibition (s) 34.5 11.3 0 −.06 45.4 14.9 −.05 −.67 39.4 15.3 −.55‡ −.09
CWI: Switching + inhibition (s) 38.0 16.8 −.18 −.29 42.8 11.7 .17 −.68 47.4 18.1 −.08 −.02

CO—control participants; BG—basal ganglia patients; PD—Parkinson’s disease patients; IQ—pre-morbid verbal IQ estimated using the NART; CWI—color-word interference
subtest from the DKEFS (see text for details on score calculation); rUD—correlation estimated using accuracy (averaged over blocks) on the unidimensional task; rCJ—correlation
estimated using accuracy (averaged over blocks) on the conjunction task.

* IQ: significant one-way ANOVA [F (2, 28) = 5.21, p < .05] driven by lower scores for the BG patients relative to the PD patients and controls (p’s < .05).
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ness was defined as the intensity in RGB units. Vertical position was defined as the
vertical location in pixels of the center of the lines. For the length-orientation stim-
uli, length was relevant and orientation irrelevant for the unidimensional task. For
the conjunction task with these stimuli, the quadrant assigned to category B was
high on length and low on orientation, with all other stimuli assigned to category A.

1 The Wisconsin Card Sorting Task (WCST—Berg, 1948; Heaton et al., 1993) and
Trail-Making (TM) subtest from the DKEFS were included as additional measures
of executive function for the BG and PD patients, respectively. The difference in
neuropsychological test batteries between the two patient groups is the result of
the original design of two, patient-specific experiments. The BG patients did not
significantly differ from control participants on the WCST [number of categories:
t (11) = .56, p = .59, SE = 1.33; perseverative errors: t (11) = 1.12, p = .29, SE = 6.46;
set-loss errors: t (11) = .36, p = .72, SE = .55] nor was performance on the WCST
significantly associated with average accuracy on the conjunction task [number
† Digit span backward: significant one-way ANOVA [F (2, 42) = 3.63, p < .05] drive
cores for the BG patients relative to controls (p = .07).
‡ CWI: inhibition: significant correlation (p < .05).

Seventeen patients (seven female) with idiopathic PD were tested. The patients
ere recruited by referrals from neurologists or through Parkinson’s support groups.
ine of the PD patients were tested in California and eight in Maine. The patients
ad been diagnosed an average of 7.4 years (SD = 4.8) prior to testing. Disease sever-

ty based on Hoehn and Yahr (1967) ratings averaged 1.6 (SD = .7) with 15 of the
7 patients at stages 1 or 2 (on the five-point scale). Disease severity was also
valuated with the motor subscale of the Unified Parkinson’s Disease Rating Scale
UPDRS—Fahn, Elton, & Members of the UPDRS Development Committee, 1987) and
veraged 24.9 (SD = 7.4) on the 0–108 point scale.

At the time of the experiment, sixteen of the PD patients were taking daily
oses of L-dopa and/or dopamine receptor agonist medications. One PD patient
as not taking any medication. Several of the PD patients were taking additional
edications: Amantadine (n = 1), MAO-B inhibitor (n = 1), COMT inhibitor (n = 4),

nticholinergic (n = 1). Ten of the 17 PD patients were tested, in separate sessions,
oth on and off their medications. For the off session, the participant abstained from
ll medication for at least 18 h prior to testing. This time interval is commonly used
n investigations of the effects of medication withdrawal (Cools, Barker, Sahakian, &
obbins, 2003; Frank, Seeberger, & O’Reilly, 2004; Kehagia, Cools, Barker, & Robbins,
009; Shohamy, Myers, Geghman, Sage, & Gluck, 2006) and is well beyond the half-

ife of the medications (Cedarbaum, 1987; Dingemanse et al., 1995; Holm & Spencer,
999; Kompoliti et al., 2002). For the patients tested on and off medication, the
rder of the two sessions was counterbalanced and the sessions were separated by
minimum of 2 weeks.

A control group (n = 23, 6 female) was recruited from the communities sur-
ounding the University of California, Berkeley and the University of Maine (see
able 1). None of the controls reported a history of neurological or psychiatric dis-
rders and were selected to span the range of the patients in terms of age and
ducation (see Table 1). Given the possibility that the BG and PD patient groups
ould differ on any number of demographic variables, separate groups of con-

rol participants were recruited for comparison to each patient group. Analysis of
he demographic variables from the patient and control groups, however, did not
eveal any substantial group differences. Thus, for simplicity, the control partici-
ants were combined into a single group and the results below are presented as a
ingle experiment.

The study protocol was approved by the institutional review boards of the VA
edical Center in Martinez, University of California, Berkeley, and the University

f Maine. Neither the patients nor controls had any signs of dementia (as indi-
ated by the Mini Mental State Exam, all scores >28—Folstein, Folstein, & McHugh,
975) or symptoms of clinical depression (as assessed by the Beck Depression

nventory—Beck, Steer, & Brown, 1996). All participants reported 20/20 vision or
ision corrected to 20/20.

.2. Neuropsychological assessment

A battery of neuropsychological tests was used to assess different aspects of cog-
itive function in both patients and controls. We added the National Adult Reading
est (NART—Nelson, 1982) to the battery after testing had commenced, desiring a
ool that could provide an estimate of pre-morbid verbal intelligence. Given this
hange in method, we obtained NART data for 13 PD patients, all 6 focal BG patients,
nd 22 controls.

In rule-based tasks, learning is assumed to be highly dependent upon working

emory and executive function (see Ashby et al., 1998; Ashby & Maddox, 2005 for

eviews). Thus, neuropsychological tests were included to assess these processes.
he digit span subtest (backward) of the Wechsler Adult Intelligence Scale—Third
dition (Wechsler, 1997a) and the spatial span subtest (backward) of the Wechsler
emory Scale—Third Edition (Wechsler, 1997b) provided an index of working mem-

ry. Executive functions were evaluated with the color-word interference (CWI)
lower scores for the PD patients relative to controls (p < .05) and marginally lower

subtest from the Delis-Kaplan Executive Function System (DKEFS—Delis, Kaplan, &
Kramer, 2001).1 The CWI comprises four subtests. The first two are baseline mea-
sures of the time to name a list of colors and the time to read a list of color words.
The third is a modified version of the traditional Stroop (1935) task, designed to
assess the role of response conflict and inhibitory processes when naming the ink
color of dissonant color words (e.g., the word “green” in red ink). The fourth subtest
incorporates a task switching component in which participants are asked to alter-
nate (irregularly) between naming the ink color and reading the word. We used
the third (i.e., inhibition) and fourth (i.e., switching + inhibition) subtests as indices
of executive functioning. Inhibition scores, and switching + inhibition scores, were
computed by subtracting the average time to complete the two baseline subtests.
Higher numbers indicate a greater cost, or reduced executive functioning.

The motor subscale of the UPDRS and a maximum-rate tapping task were used
as indices of the effect of medication withdrawal on motor functioning in eight
of the 10 patients tested both on and off their medications. On the tapping task,
participants were instructed to tap as fast as possible with the index finger on a
response key. The trial was initiated when the participant made the first keypress
and continued until 31 taps were recorded. At the end of each trial, feedback was
provided indicating the mean intertap interval (ITI) and the standard deviation of the
ITIs. This procedure was repeated six times for each hand. An average tapping score
was calculated for each participant (separately for each hand) by computing the
mean ITI for the last five trials and averaging the ITIs across trials. The experimenter
monitored performance to ensure that scores were not artificially inflated by the
failure to activate the response key.

1.3. Categorization tasks

The participants were tested on the unidimensional and conjunction tasks in
the same session. The order of the categorization tasks was counterbalanced across
participants. In order to minimize carry-over effects between the tasks, two sets of
stimuli (counterbalanced across the two tasks) were used (Fig. 1). One set involved
lines that varied in length and orientation; the other set involved lines that var-
ied in brightness and vertical position. Length was defined in pixels. Orientation
was defined as the counterclockwise rotation in degrees from horizontal. Bright-
of categories: r (5) = .51, p = .38; perseverative errors: r (5) = −.58, p = .31; set-loss
errors: r (5) = .11, p = .87]. Similarly, the PD patients did not significantly differ from
control participants on the TM test [set shifting: t (31) = 1.52, p = .14, SE = 21.49]
nor was performance on the TM test significantly associated with average accuracy
on the unidimensional [set shifting: r (15) = −.11, p = .70] or conjunction tasks [set
shifting: r (15) = .08, p = .77].
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or the brightness-position stimuli, brightness was relevant and position irrelevant
or the unidimensional task and the quadrant assigned to category B was high on
osition and low on brightness for the conjunction task.2

Ninety-six stimuli were used in the unidimensional and conjunction tasks, with
8 assigned to each of the two response categories. To create these structures, we
sed the randomization technique introduced by Ashby and Gott (1988). Each cat-
gory was defined as a bivariate normal distribution with a mean and a variance
n each dimension, and by a covariance between dimensions. The exact parameter
alues were taken from previous work (Ell et al., 2006; Maddox et al., 2004). To
enerate the stimuli for the unidimensional task, 24 pseudo-random samples (x, y)
ere drawn from the distribution for each of the four quadrants. For the length-

rientation stimuli, the length range was selected to roughly match the range of
isual angles used in previous work and the orientation range was selected to equate
he discriminability of changes in perceived length to changes in perceived orienta-
ion (Ashby, Queller, & Berretty, 1999). For the brightness-position stimuli, the RGB
ntensity of the stimulus ranged from 75 to 225 (of a possible range of 0–255 in RGB
nits) and the vertical position range was selected such that the optimal position
riterion was above the center of the monitor. These values were again based on
ilot work in which we sought to equate discriminability of the two dimensions.

Each stimulus was presented on a black background and subtended a visual
ngle ranging from 0.7◦ to 7.3◦ at a viewing distance of approximately 60 cm. The
timuli were generated and presented using the Psychophysics Toolbox extensions
Brainard, 1997; Pelli, 1997) for MATLAB. The stimuli were displayed on either a 15′′

RT with 1024 × 768 pixel resolution in a dimly lit room or on a laptop LCD of the
ame resolution when testing was conducted in the participants’ home. In the latter
ase, the stimuli were scaled to equate the visual angle.

On each trial, a single stimulus was presented and the participant was instructed
o make a category assignment by pressing one of two response keys (labeled ‘A’
r ‘B’) with either the left or right index finger. Participants were instructed that
heir goal was to learn the categories by trial-and-error. Participants were informed
hat there were two equally likely categories and that the best possible accuracy
as 95% (i.e., optimal accuracy). The instructions emphasized accuracy and there
as no response time limit. After responding, feedback was provided. When the

esponse was correct, the word “CORRECT” appeared in green and was accompanied
y a 1 s, 500 Hz tone; when incorrect, the word “WRONG” appeared in red and was
ccompanied by a 1 s, 200 Hz tone. The screen was then blanked for 500 ms prior to
he appearance of the next stimulus. In addition to trial-by-trial feedback, summary
eedback was given at the end of each 96-trial block, indicating overall accuracy for
hat block.

A standard keyboard was used to collect responses. The keyboard characters
s’ and ‘l’ were assigned to categories ‘A’ and ‘B’, respectively. Following, previous

ork (Ell et al., 2006; Maddox et al., 2004), the response mappings were fixed across
articipants. We did not expect performance to vary between the two hands given
hat the response requirements were minimal (e.g., speed was not emphasized)
nd that all of the patients had no overt difficulty producing the finger movements.
ndeed, error rates did not differ as a function of the hand used to respond in the
urrent study.

Each participant completed 3 blocks of 96 trials, with the presentation order of
he stimuli randomized within each block. After completing one of the two catego-
ization tasks with one set of stimuli (e.g., the unidimensional task with lines varying
n length and orientation), the participant completed neuropsychological testing,
ollowed by the other categorization task with the other set of stimuli (e.g., the con-
unction task with lines varying in brightness and position). As noted above, the
rder of the two categorization tasks and the categorization task-stimulus set pair-
ngs were counterbalanced across participants. Each session lasted approximately
.5 h, including neuropsychological testing and multiple breaks.

. Results

.1. Accuracy-based analyses: patients vs. controls
The learning curves for the unidimensional task suggest a late-
raining impairment for the PD patients and no indication of
mpairment for the focal BG patients (Fig. 3A).3 Consistent with

2 Pilot testing with healthy young controls revealed no difference in task diffi-
ulty as a function of stimulus type. There was a trend in both experiments for the
atients and controls to perform worse with the rectangles varying in brightness
nd position. Importantly, the pattern of data for the patients in both experiments
as present regardless of stimulus type.
3 On the unidimensional task, one PD patient and three control participants

erformed much worse than the average for their respective group means (>2SD
ifference on overall accuracy and during the final block). These four participants
ere excluded from the analyses of these data. This PD patient was also tested OFF
edication and was also excluded from the analysis of the effect of medication.
n the conjunction task, one PD patient and one control were outliers and were
xcluded from the analyses of these data.
ia 48 (2010) 2974–2986

this observation, a 3 block × 3 group mixed ANOVA revealed a
significant block × group interaction [F (3.04, 59.36) = 3.09, p = .03,
MSE = 70.11, �2

p = .14] that was driven by decreased accuracy for
the PD patients relative to controls during the final training block
(p = .02).4 The PD patients did not perform significantly worse than
the focal BG patients during the final block (p = .33). The main effect
of block was significant reflecting the general increase in accu-
racy with training for all groups [F (1.52, 59.36) = 20.90, p < .01,
MSE = 70.11, �2

p = .35]. Neither the main effect of group [F (2,
39) = .4, p = .68, MSE = 389.78, �2

p = .02] nor the other pairwise com-
parisons (p’s > .33) were significant.

The learning curves for the conjunction task suggest that both
patient groups were impaired throughout training relative to con-
trols (Fig. 3B). Consistent with this observation, a 3 block × 3
group mixed ANOVA revealed a significant main effect of group
[F (2, 41) = 3.68, p = .03, MSE = 236.69, �2

p = .15] that was driven
by lower accuracy (averaged across blocks) for the PD patients
(M = 73.52, SE = 2.22) and focal BG patients (M = 73.08, SE = 3.63)
relative to controls (M = 80.66, SE = 1.89). The comparison of the
PD group and controls was significant (p = .02); the comparison
of the focal BG group and controls was only marginally signifi-
cant (p = .07). The main effect of block was significant reflecting
the general increase in accuracy with training for all groups [F (2,
82) = 18.96, p < .01, MSE = 29.56, �2

p = .32]. The block × group inter-
action was not significant by traditional standards [F (4, 82) = 2.06,
p = .09, MSE = 29.56, �2

p = .09]. To directly test the hypothesis that
the BG patients would have an impairment early in training as
would be predicted from our previous work (Ell et al., 2006) and
related findings of a pronounced early-training dependence on the
BG in rule-based tasks (e.g., Knowlton, Mangels, & Squire, 1996;
Pasupathy & Miller, 2005), we conducted a planned comparison of
the focal BG patients and controls during the first training block.
This analysis revealed a significant impairment for the BG group
(p = .02).

It is important to consider whether the pattern of impair-
ment in the two patient groups can be attributed to differences
in task difficulty. We assessed this by examining the data from
the control participants. Nineteen controls contributed data for
both tasks (i.e., were not outliers on either task—see footnote 3).
A 3 block × 2 task within-subjects ANOVA conducted on the data
from these 19 participants did not reveal a significant effect of
task [F (1, 22) = .003, p = .96, MSE = 545.45, �2

p = 0]. The block × task
interaction was marginally significant [F (1.21, 26.57) = 3.47, p = .07,
MSE = 81.98, �2

p = .14], but control accuracy on the two tasks did not
significantly differ for any block (p’s > .41). Further evidence that the
tasks were of similar difficulty is given by the fact that 11 of the 23
controls had higher average accuracy on the conjunction task and
12 had higher average accuracy on the unidimensional task.

We also asked if there was evidence of a difference in task
difficulty in the response time data. Consistent with the accu-
racy data, an analysis of the response time data (response times
were calculated for each participant by computing the median
response time across trials) provided no support for the task
difficulty hypothesis. A 3 block × 2 task within-subjects ANOVA
indicated that neither the main effect of task [F (1, 22) = .07, p = .79,
MSE = 181271.05, �2

p = .07] nor the task × block interaction [F (2,
44) = 1.56, p = .22, MSE = 27970.58, �2

p = .07] was significant [main

effect of block: F (2, 44) = 10.93, p < .001, MSE = 56436.82, �2

p = .33.
The analysis of the RT data, however, is limited given that there
was no response deadline.

4 A Huynh–Feldt correction for violation of the sphericity assumption has been
applied to this, and subsequent, mixed ANOVAs (when appropriate). Sidak multiple
comparison correction used for these and all subsequent post hoc tests.
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ig. 3. Average accuracy (±SEM) for the controls (CO), the basal ganglia lesion pat
onjunction tasks. Average accuracy for the subset of PD patients tested both on an

.2. Accuracy-based analyses: medication effects for PD patients

The learning curves for the subset of PD patients tested both
n and off their dopaminergic medication suggests that abstaining
rom dopaminergic medication had a negligible effect on catego-
ization accuracy (Fig. 3C and D). Separate 3 block × 2 medication
tate repeated-measures ANOVAs conducted on the two tasks
howed no difference of medication state on either the unidi-
ensional task [main effect of medication state: F (1, 8) = .15,
= .71, MSE = 439.62, �2

p = .02; medication state × block interac-
ion: F (1.33, 10.65) = .12, p = .80, MSE = 6.82, �2

p = .02; main effect
f block: F (1.25, 10.01) = 14.58, p < .01, MSE = 49.25, �2

p = .65 or the
onjunction task [main effect of medication state: F (1, 9) = .12,
= .73, MSE = 307.94, �2

p = .01; medication state × block interac-
ion: F (2, 18) = .91, p = .42, MSE = 43.8, �2

p = .09; main effect of block:
(2, 18) = 3.01, p < .01, MSE = 18.64, �2

p = .25.5

Surprisingly, the patients did not show dramatic changes in
ymptomology following 18 h of medication withdrawal. Their
core on the motor subscale of the UPDRS [MON = 23.9, SEON = 2.5;

OFF = 28.1, SEOFF = 3; t (7) = 1.4, p = .2, SE = 3] was slightly ele-
ated. Similar modest, and non-significant, increases in ITI were
bserved on the tapping task for both the right [MON = 247.3,

EON = 19.5; MOFF = 253.8, SEOFF = 20.3; t (7) = 1, p = .4, SE = 6.6] and
eft [MON = 273.1, SEON = 20.9; MOFF = 279.3, SEOFF = 24.9; t (7) = .6,
= .5, SE = 9.9] hands.

5 Counterbalancing medication state across the two testing sessions successfully
inimized the impact of order effects as the difference in average accuracy (across

locks and participants) did not vary across testing sessions [unidimensional: t
8) = −.31, p = .76, SE = 5.73; t (9) = −.85, p = .42, SE = 4.39]. In addition, the use of
ifferent stimulus sets successfully minimized carry over effects between testing
essions as the correlations in average accuracy between testing sessions were small
nd non-significant [unidimensional: r (9) = −.16, p = .69; conjunction: r (10) = .1,
= .77].
(BG), and the Parkinson’s disease patients (PD) on the (A) unidimensional and (B)
heir medications on the (C) unidimensional and (D) conjunction tasks.

2.3. Model-based analyses

The analysis of the accuracy data revealed a selective impair-
ment of the BG patients on the conjunction task and a more general
impairment for the PD patients on both tasks. To further explore
the basis of these impairments, we used model-based analyses to
evaluate different ways in which the patients might have difficulty
on rule-based tasks. For example, a failure of selective attention on
the unidimensional task might result in a decision strategy that was
sensitive to both stimulus dimensions. Similarly, a failure to attend
to both dimensions on the conjunction task would result in a deci-
sion strategy overly sensitive to a single dimension. Alternatively,
a learning impairment may be driven by the inconsistent appli-
cation of an optimal strategy. The following analyses represent a
quantitative approach to evaluating these hypotheses.

Three different types of models were evaluated, each based on
a different assumption concerning the participant’s strategy (see
Appendix A for a more detailed description of the models and fit-
ting procedure). Rule-based models assume that the participant
either attends selectively to one dimension (unidimensional clas-
sifiers; e.g., if the line is long, respond B; otherwise respond A) or
makes independent decisions about the stimulus on both dimen-
sions (conjunctive classifiers; e.g., if the line is long and low in
angle respond B; otherwise respond A). For the unidimensional
task, there were two versions of the unidimensional classifier, one
assuming participants used the optimal decision strategy in Fig. 1A
(optimal classifier) and one assuming participants used a unidi-
mensional classifier with a suboptimal intercept on the relevant
dimension (unidimensional classifier). Similarly, for the conjunc-
tion task there were two versions of the conjunctive classifier: one

assuming participants used the optimal conjunctive classifier in
Fig. 1B (optimal classifier) and one assuming participants used a
conjunctive classifier with suboptimal intercepts on the two stim-
ulus dimensions (conjunctive classifier). Information–integration
models (linear and minimum distance classifiers) assume that the
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Fig. 4. Percentage of participants in the (A) unidimensional and (B) conjunction tasks whose data were best fit by the optimal classifier (OC), the suboptimal unidimensional
classifier (UC), the suboptimal conjunctive classifier (CC), or a model assuming that participants were responding randomly (RR). None of the data sets were best fit by
t these data as indexed by the average (over blocks and participants) percent of responses
a ), BG (M = 88.7, SD = 8.1), PD (M = 83.9, SD = 11.1); conjunction task: CO (M = 85.2, SD = 7.1),
B or a far greater percentage of the responses than would be predicted by chance (i.e., 50%
o ia lesion patients; PD: Parkinson’s disease patients.
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he information–integration models. The models provided a reasonable account of
ccounted for by the best-fitting model: unidimensional task: CO (M = 89.02, SD = 9.4
G (M = 80.7, SD = 10.6), PD (M = 81.0, SD = 6.9). The best-fitting models accounted f
f responses accounted for) for all groups. CO: control participants; BG: basal gangl

articipant combines the stimulus information from both dimen-
ions prior to making a categorization decision. Finally, random
esponder models assume that the participant guesses.

These models make no detailed processing assumptions in
he sense that a number of different process-based accounts are
ompatible with each of the models (e.g., Ashby, 1992a; Ashby

Waldron, 1999). Thus, the modeling described in this section
rovides a formal vehicle to test hypotheses about the decision
trategies used by participants, and gain insight into the under-
ying deficits observed in the patient groups. For example, for
he unidimensional task, if either the conjunctive classifier or
nformation–integration models provide a better fit than the uni-
imensional classifier, then we would have evidence of a failure of
elective attention. For the PD patients, all model-based analyses
ere limited to the data to the session in which the patients were

n medication given the lack of an effect of medication withdrawal.
On the unidimensional task, the majority of the data sets were

est fit by the optimal classifier and all but one participant was best
t by a model assuming selective attention (optimal and unidimen-
ional classifiers, Fig. 4A). Thus, both patient groups were able to
ttend selectively to the relevant stimulus dimension. Moreover,
he late-training impairment observed for the PD patients was not
riven by a pure failure of selective attention. Rather, the PD impair-
ent was attributed to the inconsistent use of this strategy. This

ould arise from an increase in trial-by-trial variability in the repre-
entation and/or application of the decision criterion (i.e., internal
oise).6 Consistent with the hypothesis of increased decision crite-
ion variability, the average noise parameter estimate was higher
n block 3 for the PD patients than the controls (Fig. 5A) [t (33) = 3.2,
< .01, SE = .13]. In addition, increased noise was associated with

ecreased accuracy as evidenced by a significant negative correla-
ion between the estimate of internal noise and block 3 accuracy [r
16) = −.54, p < .05].

6 All of the models include a free parameter to reflect the combined trial-by-trial
ariability in perceptual and criterial noise (see Appendix A for details). Given that
he duration of stimulus presentation was unlimited, it is reasonable to assume that
his internal noise primarily reflects variability in the decision criteria.

Fig. 5. Average criterial noise estimates (±SEM) from the best-fitting model (exclud-
ing random responders) for the (A) unidimensional and (B) conjunction tasks. These
data have been log transformed to correct for a positive skew in the sample distribu-
tions. PD: Parkinson’s disease patients; CO: control participants; BG: basal ganglia
lesion patients.
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On the conjunction task, the majority of controls were best fit
y the conjunctive classifier during block 1, but this pattern shifted

n favor of the optimal classifier during blocks 2 and 3 (Fig. 4B).
uring block 1, only 33% of the focal BG patients were best fit by
model assuming a conjunctive strategy (i.e., optimal and con-

unctive classifiers) as compared to 68% of controls. As would be
xpected, the BG patients who were best fit by the unidimen-
ional classifier or responding randomly averaged low accuracy
Mblock 1 = 66.8%, SEblock 1 = 5.4). Moreover, criterial noise estimates
ere larger for the BG patients relative to controls during block 1

t (24) = 2.32, p < .05, SE = .08], but not block 3 [t (25) = .99, p = .33,
E = .08] (Fig. 5B). The noise estimates were negatively correlated
ith accuracy during block 1[r (5) = −.87, p = .05]. Although limited

y a small sample size, these data suggest that the impairment for
he focal BG group during block 1 was driven by the inefficient use
f non-optimal strategies.

Similar to the BG patients, only 44% of the PD patients were best
t by a model assuming a conjunctive strategy during block 1 (i.e.,
onjunctive and optimal classifiers, Fig. 4B). By block 3, however,
similar percentage of PD patients and controls were best fit by a
odel assuming a conjunctive strategy. During block 3, the major-

ty of controls were best fit by the optimal classifier whereas the
ajority of PD patients were best fit by the conjunctive classifier

nd performed similarly to the group average for all PD patients
M = 72.3, SE = .6). Criterial noise estimates were also higher for PD
atients than controls during block 3 [t (35) = 4.46, p < .001, SE = .05],
ut not block 1 [t (33) = .51, p = .62, SE = .06] or block 2 [t (34) = 1.77,
= .09, SE = .07] (Fig. 5B). Importantly, however, the increased noise
uring block 3 did not appear to have any functional significance as
either noise estimates from the best-fitting model [r (15) = −.28,
= .31] nor noise estimates from the subset of patients best fit by
odels assuming a conjunctive strategy [r (16) = .02, p = .95] were

ignificantly correlated with accuracy. In short, these data suggest
hat the PD impairment on the conjunction task was driven primar-
ly by the use of suboptimal decision strategies.

.4. Relationship between accuracy on categorization tasks and
emographic, neuropsychological, and neuropathological
ariables

A summary of the demographic and neuropsychological vari-
bles is given in Table 1. Omnibus analyses of these data were
onducted using separate one-way ANOVAs evaluated at a crite-
ion of p = .05 (uncorrected) (see Table 1). There was a significant
roup difference on IQ that was driven by lower IQ for the focal
G patients relative to the controls and PD patients. There was also
significant group difference on digit span (backward) that was

riven by an impairment for the PD patients relative to controls
nd a marginally significant impairment for the focal BG patients
elative to controls. None of the remaining variables significantly
iffered across groups (p’s > .17).

To investigate the relationship between the demographic and
europsychological variables and category learning, correlations
ere computed with accuracy (averaged over blocks) on the unidi-
ensional and conjunction tasks evaluated at a criterion of p = .05

uncorrected) (see Table 1). Lower inhibition scores on the CWI
indicating better inhibition) were associated with higher accu-
acy on the unidimensional task for the PD patients suggesting that
hose patients that were better able to inhibit a pre-potent response
ere more accurate on a categorization task requiring the inhibi-

ion of irrelevant information. None of the other correlations were

ignificant.

For the focal BG patients, lesion volume was weakly related to
ccuracy on the conjunction task [averaged over blocks: r (6) = −.36,
= .55; block 1: r (6) = −.2, p = .75]. Average accuracy on the conjunc-

ion task was similar for the two patients with right-sided lesions
ia 48 (2010) 2974–2986 2981

(M = 72.86, SE = 2.03) compared to the four with left-sided lesions
(M = 73.19, SE = 7.32).

For the PD patients, increasing disease severity (i.e., UPDRS) was
associated with decreased accuracy on the unidimensional task
with the correlation being significant for block 3 accuracy [aver-
aged over blocks: r (16) = −.44, p = .09; block 3: r (16) = −.56, p < .05].
In contrast, there was no association between disease severity and
accuracy on the conjunction task [averaged over blocks: r (16) = .08,
p = .76; block 3: r (16) = .09, p = .75]. There was a trend for PD patients
with bilateral involvement (block 3: n = 8, M = 78.2, SEM = 4.3) to
perform worse than patients with only unilateral involvement
(block 3: n = 8, M = 87.9, SEM = 2.6) on the unidimensional task,
but this difference was only marginally significant [t (14) = 1.94,
p = .07, SE = 5.0]. PD patients with bilateral (averaged over blocks:
n = 7, M = 72.1, SEM = 2.8) involvement performed comparably to PD
patients with unilateral involvement (averaged over blocks: n = 9,
M = 74.6, SEM = 10.6) on the conjunction task [t (14) = .54, p = .6,
SE = 4.7]. PD patients with bilateral involvement also performed
worse on the inhibition [t (14) = 2.13, p = .05, SE = 6.93] and inhi-
bition + switching [t (14) = 2.13, p = .05, SE = 8.2] subtests of the CWI
test.

3. General discussion

Converging lines of evidence are consistent with the hypothesis
that the basal ganglia play an important role in rule-based category
learning (Ashby & Maddox, 2005; Price et al., 2009; Seger, 2008).
However, a comparison of neuropsychological studies suggests that
the pattern of impairment may differ across patient models of BG
dysfunction (Ell et al., 2006; Filoteo et al., 2007). The present study
addressed this issue by testing patients with focal lesions of the BG
due to stroke and patients with PD on an identical set of tasks. The
individuals with focal BG lesions were impaired on the conjunction
task and performed similar to controls on the unidimensional task.
In contrast, the PD patients were impaired on both tasks, although
a model-based analysis suggests that the source of the PD impair-
ment differed across the two tasks.

Consistent with our previous work involving a four-
dimensional, conjunction task (Ell et al., 2006), patients with
focal BG lesions were impaired on the two-dimensional, conjunc-
tion task used in the present study. In both studies, the impairment
was only present early in training. This stands in contrast to the
finding that the BG patients performed similar to matched controls
on the unidimensional task. The results of the model-based analy-
ses suggest that the selective early impairment of the BG patients
on the conjunction task was driven primarily by the inefficient use
of suboptimal decision strategies.

A more general impairment on both tasks was observed for the
PD patients. The results of the model-based analyses suggest that
the impairment on the two tasks occurred for different reasons. The
impairment on the unidimensional task was manifest late in train-
ing and was attributed to instability in the setting of the decision
criterion. In contrast, the consistent impairment on the conjunction
task was driven by the use of suboptimal strategies. Furthermore,
accuracy on the unidimensional task, but not the conjunction task,
was associated with increased disease severity and a decreased
ability to inhibit pre-potent responses. We did not observe any con-
sistent change in performance in the PD patients when they were
tested off medication.
3.1. Selective attention, working memory, and rule-based
categorization

Our selection of the conjunction and unidimensional tasks was
motivated by consideration of the demands these tasks place
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n selective attention (Ashby & Townsend, 1986; Maddox, 1992;
addox et al., 2002). To perform optimally on the conjunction task,

he participant must attend to the stimulus value on both dimen-
ions. As such, this task places low demands on selective attention;
electively attending to one dimension at the expense of the other
ould impair performance. In contrast, optimal performance on

he unidimensional task requires that the participant attend to the
timulus value on only the task-relevant dimension. As such, this
ask places a high demand on selective attention.

The conjunction and unidimensional tasks may also differ in
heir demand on working memory (Maddox et al., 2004). To per-
orm optimally the participant must learn two decision criteria in
he conjunction task whereas the participant need only learn a sin-
le decision criterion in the unidimensional task. Consistent with
his hypothesis, many studies have shown that learning multiple
riteria on different dimensions is more difficult than learning one
riterion on a single dimension (Maddox et al., 2004; Salatas &
ourne, 1974; Shepard et al., 1961), although it is unclear if this
ifference can be attributed to differences in working memory
emand. Furthermore, the relationship between working memory
nd the present tasks is not straightforward. While increasing the
umber of decision criteria may tax working memory, this increase

s at least partially offset by splitting the decision criteria across
ultiple stimulus dimensions (Ell, Ing, & Maddox, 2009).
Intuitively, the conjunction task would appear more difficult

ue to the increased complexity of the optimal decision strat-
gy; thus, one might argue that the observed dissociation for the
ocal lesion group is related to difficulty rather than a failure to
ttend to both dimensions. While we cannot rule out this possibil-
ty, the performance of the control participants was not consistent

ith a difficulty hypothesis. Accuracy, as well as response time did
ot differ in a consistent manner between tasks. Moreover, previ-
us studies involving patients with BG dysfunction have observed
elective impairment on easier rule-based tasks (Ashby et al., 2003;
iloteo et al., 2007)

On the unidimensional task, the focal BG patients performed
imilar to matched controls but the PD patients were impaired, at
east late in training. The PD impairment was not driven by a failure
f selective attention (e.g., the use of a two-dimensional classifier).
nstead, the deficit was more subtle, being attributed to an increase
n variability in the representation of the decision criterion. This
ncreased variability was associated with decreased categorization
ccuracy. Interestingly, those PD patients who were better able to
nhibit pre-potent responses (as assessed by the CWI subtest of
he DKEFS) were more accurate on a categorization task requir-
ng the inhibition of irrelevant information. Thus, it would appear
hat variation in selective attention ability was relevant for the PD
eficit, even if they were able to selectively attend to the relevant
imension in the categorization task.

Both patient groups were impaired on the conjunction task. Our
odel-based analyses indicate that the impairment for the focal

esion group was driven by the use and inconsistent application
f suboptimal decision strategies. This pattern is consistent with a
revious study involving focal BG patients (5 of 6 were tested in
he present study, Ell et al., 2006). One departure from Ell et al.
s that, in the present study, a subset of BG patients was best fit
y the unidimensional classifier (i.e., they ignored one of the stim-
lus dimensions). We attribute this to differences in the category
tructure. Ell et al. used a four-category, conjunction task where the
ost accurate unidimensional strategy would result in only 25%

orrect. In the present paper, we used a two-category, conjunction

ask where the most accurate unidimensional strategy would result
n 75% correct. The PD impairment on the conjunction task was also
ttributed to the use of suboptimal decision strategies. Moreover,
or the PD patients, variation in criterial noise was not predictive of
verall accuracy.
ia 48 (2010) 2974–2986

While the focal BG group demonstrated an impairment during
the first phase of testing with the conjunction task, their perfor-
mance was normal across all blocks on the unidimensional task.
This finding may appear to be at odds with previous reports of
impairment of focal BG lesion patients on the WCST, a unidi-
mensional task with many, discrete-valued dimensions (Benke,
Delazer, Bartha, & Auer, 2003; Keri et al., 2002; Pickett, Kuniholm,
Protopapas, Friedman, & Lieberman, 1998). It is unlikely that the
discrepant findings are due to methodological differences between
the WCST and the unidimensional task as the present sample of
focal BG lesion patients were not impaired on the WCST (see foot-
note 1).

PD patients, on the other hand, are consistently impaired on
unidimensional tasks and this impairment is robust to method-
ological differences (Ashby et al., 2003; Filoteo et al., 2007; Filoteo,
Maddox, Ing et al., 2005; Price, 2006). In contrast to the present
results, Filoteo et al. (2007) found that PD patients performed sim-
ilar to matched controls on two conjunction tasks, suggesting that
the PD impairment may be restricted to rule-based tasks with high
selective-attention demand. The methodology in the present study
is very similar to that used by Filoteo et al., with the exception of
the specific stimulus dimensions. In the present study, two stimulus
sets were used: lines varying across trials in length and orientation,
and rectangles varying across trials in brightness and position. Filo-
teo et al. used Gabor filters (i.e., sine-wave gratings weighted by a
circular Gaussian filter that vary across trials in spatial frequency
and orientation). PD patients experience a number of visual pro-
cessing deficits (Davidsdottir, Cronin-Golomb, & Lee, 2005) with
reduced contrast sensitivity functions (e.g., Bodis-Wollner et al.,
1987) being one of the more prominent impairments. Although
visual processing deficits should have a negative impact on all of
the stimulus sets, Gabor filters would appear to be particularly
susceptible given the importance of contrast in resolving spatial
frequency differences (e.g., Blakemore & Campbell, 1969). Thus, it
seems unlikely that the discrepant results are due to methodolog-
ical differences.

Although our results suggest that the PD impairment on rule-
based tasks may be more general than previously thought, the
neuropsychological data argue against a general cognitive deficit.
Relative to controls (and the focal BG patients), the PD patients were
not impaired on measures of IQ, spatial working memory, or exec-
utive function. Of course, these tasks do not test learning per se,
but rather component processes that are thought to be important
for learning. Thus we cannot rule out the possibility that the PD
patients have a more general learning deficit that might be driven
by the online use of these component processes.

3.2. Basal ganglia contributions to rule-based categorization

The focal BG and PD groups differ in a number of substantive
ways. The former have suffered an acute neurological episode, have
damage limited to one side, and the pathology is relatively focal. The
latter have had an on-going degenerative process, generally bilat-
eral symptoms, and pathology that may be more diffuse. Assuming
the BG contribute to rule-based categorization, one might suppose
that the PD patients would demonstrate a more general deficit than
patients with focal BG lesions. Indeed, our data are consistent with
this hypothesis.

The focal BG group, although small in number, does provide
some insight into the contribution of different subregions of the
BG in rule-based categorization. The current results suggest that

the impairment on the conjunction task, the task hypothesized
to place relatively high demands on working memory demand
(Filoteo et al., 2007), may be related to putamen damage. Puta-
men dysfunction is observed early in PD (Brooks & Piccini, 2006;
Kish, Shannak, & Hornykiewicz, 1988) and this nucleus showed
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he greatest overlap of pathology in our sample of focal BG lesion
atients. Converging lines of evidence point to a role for the
utamen in rule-based tasks. In neuroimaging studies, activation

evels in the putamen have been associated with working mem-
ry maintenance (Chang, Crottaz-Herbette, & Menon, 2007), the
anipulation of information during retrieval (Dodds et al., 2009),

nd feedback processing during rule-based categorization (Monchi,
etrides, Petre, Worsley, & Dagher, 2001; Seger & Cincotta, 2006).
oreover, putamen activity is positively correlated with working
emory load (Chang et al., 2007). The conjunction task may place

reater demand on working memory processes than the unidi-
ensional task given the need to combine information from two

imensions.
The observation that only the PD patients were impaired

n the unidimensional task suggests three possible hypothe-
es concerning the neuroanatomical locus of impairment on
elective-attention-demanding, categorization tasks. First, it may
e related to pathology in other basal ganglia nuclei. For instance,
opamine depletion in the caudate nucleus may be critical. Con-
istent with this hypothesis, previous studies involving focal BG
esion patients on rule-based tasks with high selective-attention
emand, had shown that the impairment was associated with
athology in the caudate nucleus (e.g., Swainson & Robbins,
001).

Second, selective-attention impairments may require bilateral
athology in the basal ganglia. Consistent with this argument, there
as a trend for PD patients with bilateral involvement to perform
orse on the unidimensional task than PD patients with unilat-

ral involvement. In addition, bilateral patients had more difficulty
nhibiting a pre-potent response and with task switching.

Third, the PD impairment might arise from dysfunction in struc-
ures outside the basal ganglia. For instance, although cortical
opamine depletion is thought to be less severe and occur in the

ater stages of the disease (Agid et al., 1987), it is impossible to rule
ut the hypothesis that the PD deficits are related to prefrontal dys-
unction in our sample of mild-to-moderate PD patients. Indeed, as

ight be expected if the PD impairment on the unidimensional
ask were related to disruption of processing in prefrontal cortex,
he patients demonstrated a significant correlation between dis-
ase severity and accuracy on the unidimensional task. Although
here were no group differences in measures of executive function-
ng that are commonly associated with frontal function, the ability
o inhibit a pre-potent response was related to accuracy on the uni-
imensional task. Testing patients with focal prefrontal lesions on
nidimensional and conjunction tasks will be important for clarify-

ng the respective contributions of the basal ganglia and prefrontal
ortex to rule-based categorization.

Interestingly, we did not observe any consistent change in
erformance in the PD patients when they were tested after
bstaining from their medication for at least 18 h (M = 20.1 hrs,
D = 3). Although based upon a null result, these data suggest that
ule-based category learning may not be dependent upon global
opamine levels. This interpretation, however, is complicated by
he observation that patients also showed very mild and non-
eliable changes in motor performance after abstaining from their
edication.
It is important to interpret these data within the broader context

f neurocomputational models of category learning. Particularly
elevant is the COVIS model of category learning proposed by Ashby
nd colleagues. According to COVIS, learning in rule-based tasks
equires the maintenance of decision strategies in working mem-

ry, the selection of novel rules, and the ability to switch attention
mong competing rules (Ashby et al., 1998). In theory, basal ganglia
ysfunction may have interfered with any of these sub-processes.
he increased criterial noise that was observed for the PD patients
n the unidimensional task and BG patients on the conjunction task
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suggests, however, that the impairment was driven by impaired
maintenance or an increased propensity to switch attention from
one rule to another. Although speculative, this hypothesis does tie
in with conjectures on how the basal ganglia contribute to rule-
based processing in a variety of other domains such as working
memory (Ashby, Ell, Valentin, & Casale, 2005; Lawrence, Watkins,
Sahakian, Hodges, & Robbins, 2000), executive functioning (Cools,
2006; Crone, Wendelken, Donohue, & Bunge, 2006; Owen et al.,
1993), and language use (Longworth, Keenan, Barker, Marslen-
Wilson, & Tyler, 2005; Teichmann et al., 2005; Ullman, 2004).

One caveat to point out, though, is that, COVIS focuses on
the caudate nucleus as the critical BG component for rule-based
learning, a hypothesis motivated by the neuroimaging litera-
ture (e.g., Filoteo, Maddox, Simmons et al., 2005; Hikosaka,
Sakamoto, & Sadanari, 1989; Rao et al., 1997; Seger & Cincotta,
2006). The one patient in our sample whose lesion also included
the caudate performed normally on the unidimensional task
(Macross blocks = 86.5%), but was severely impaired on the conjunc-
tion task (Macross blocks = 53.1%). The present results suggest that the
role of the putamen in rule-based categorization may need to be re-
evaluated. As noted above, the putamen has been associated with
many of the component processes thought to be critical for rule-
based tasks. Alternatively, the putamen may influence processing
within the caudate nucleus via striatal cell bridges (Martin, 1996) or
other local networks within the basal ganglia (e.g., striato-nigral-
striatal projections, see Haber, 2003). Another hypothesis is that
the putamen may be involved in resolving competition between
multiple learning systems engaged during categorization (Ashby
et al., 1998).

4. Conclusions

Patients with BG lesions demonstrated an early-training impair-
ment on a rule-based task in which the demands on working
memory demand were high, but not on a rule-based task that
required selectively attending to one dimension. In contrast, the
PD patients were impaired on both tasks, although the cause of
this impairment, as inferred from a model-based analysis, dif-
fered for the two tasks. The PD impairment on the task with high
working memory demand was driven by the use of suboptimal
decision strategies. In contrast, the impairment on the task with
high selective-attention demand was driven by the inconsistent
application of an appropriate decision strategy. These data suggest
that demands on selective attention and working memory influ-
ence the presence of impairment in patients with focal BG lesions
and the nature of the impairment in patients with PD. Moreover,
these data highlight the value of comparing multiple models of BG
dysfunction.
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ppendix A. Appendix

To get a more detailed description of how participants cate-
orized the stimuli, a number of different decision bound models
Ashby, 1992a; Maddox & Ashby, 1993) were fit separately to the
ata for each participant from every block. Decision bound models
re derived from general recognition theory (Ashby & Townsend,
986), a multivariate generalization of signal detection theory
Green & Swets, 1966). It is assumed that, on each trial, the percept
an be represented as a point in a multidimensional psychological
pace and that each participant constructs a decision bound to par-
ition the perceptual space into response regions. The participant
etermines which region the percept is in, and then makes the cor-
esponding response. While this decision strategy is deterministic,
ecision bound models predict probabilistic responding because of
rial-by-trial perceptual and criterial noise (Ashby & Lee, 1993).

The appendix briefly describes the decision bound models.
or more details, see Ashby (1992a) or Maddox and Ashby
1993). The classification of these models as either rule-based or
nformation–integration models is designed to reflect current theo-
ies of how these strategies are learned (e.g., Ashby et al., 1998) and
as received considerable empirical support (see Ashby & Maddox,
005; Maddox & Ashby, 2004 for reviews).

.1. Rule-based models

Unidimensional classifier (UC). This model assumes that the stim-
lus space is partitioned into two regions by setting a criterion on
ne of the stimulus dimensions. Two versions of the UC were fit to
hese data. For example, for the line stimuli, one version assumes
hat participants attended selectively to length and the other ver-
ion assumes participants attended selectively to orientation. The
C has two free parameters, one corresponds to the decision cri-

erion on the relevant dimension and the other corresponds to the
ariance of internal (perceptual and criterial) noise (�2). For the
nidimensional task, a special case of the UC, the optimal unidimen-
ional classifier, assumes that participants use the unidimensional
ecision bound that maximizes accuracy. This special case has one
ree parameter (�2).

Conjunctive classifier (CC). A more appropriate rule-based strat-
gy in the conjunction task is a conjunction rule involving separate
ecisions about the stimulus value on the two dimensions with the
esponse assignment based on the outcome of these two decisions
Ashby & Gott, 1988). The CC assumes that the participant partitions
he stimulus space into four regions in a manner consistent with
he optimal decision strategy. For example, for the line stimuli, the
C would assume that individuals assigned a stimulus to category B

f it was high in length and low in orientation (i.e., the lines are long
nd shallow); otherwise the stimulus would be assigned to cate-
ory A. The CC has three free parameters: the decision criteria on
he two dimensions and a common value of �2 for the two dimen-
ions. The optimal conjunctive classifier assumes that participants
se decision bounds that maximize accuracy. This special case has
ne free parameter (�2)

.2. Information–integration model

The linear classifier (LC). This model assumes that a linear deci-
ion bound partitions the stimulus space into two regions. The
C differs from the CC in that the LC does not assume decisional

elective-attention (Ashby & Townsend, 1986). This produces an
nformation–integration decision strategy because it requires lin-
ar integration of the perceived values on the stimulus dimensions.
he LC has three parameters, slope and intercept of the linear
ound, and �2.
ia 48 (2010) 2974–2986

The minimum distance classifier (MDC). This model assumes that
there are a number of units representing a low-resolution map of
the stimulus space (Ashby & Waldron, 1999; Ashby, Waldron, Lee, &
Berkman, 2001; Maddox et al., 2004). On each trial, the participant
determines which unit is closest to the perceived stimulus and pro-
duces the associated response. The version of the MDC tested here
assumed four units because the category structures were generated
from four multivariate normal distributions. Because the location
of one of the units can be fixed, and because a uniform expansion
or contraction of the space will not affect the location of the min-
imum distance decision bounds, the MDC has six free parameters
(five determining the location of the units and �2)

A.3. Random responder models

Equal response frequency (ERF). This model assumes that partic-
ipants randomly assign stimuli to the two response frequencies in
a manner that preserves the category base rates (i.e., 50% of the
stimuli in each category). This model has no free parameters

Biased response frequency (BRF). This model assumes that par-
ticipants randomly assign stimuli to the two response frequencies
in a manner that matches the participant’s categorization response
frequencies (i.e., the percentage of stimuli in each category is com-
puted from the observed response frequencies). This model has no
free parameters.

A.4. Model fitting

The model parameters were estimated using maximum like-
lihood (Ashby, 1992b; Wickens, 1982) and the goodness-of-fit
statistic was

BIC = r ln N − 2 ln L

where N is the sample size, r is the number of free parameters, and
L is the likelihood of the model given the data (Schwarz, 1978).
The BIC statistic penalizes a model for poor fit and for extra free
parameters. To find the best model among a set of competitors,
one simply computes a BIC value for each model, and then chooses
the model with the smallest BIC.
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