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Focal putamen lesions impair learning in rule-based, but not
information-integration categorization tasks
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bstract

Previous research on the role of the basal ganglia in category learning has focused on patients with Parkinson’s and Huntington’s disease,
eurodegenerative diseases frequently accompanied by additional cortical pathology. The goal of the present study was to extend this work to
atients with basal ganglia lesions due to stroke, asking if similar changes in performance would be observed in patients with more focal pathology.
atients with basal ganglia lesions centered in the putamen (6 left side, 1 right side) were tested on rule-based and information-integration visual
ategorization tasks. In rule-based tasks, it is assumed that participants can learn the category structures through an explicit reasoning process. In
nformation-integration tasks, optimal performance requires the integration of information from two or more stimulus components, and participants

re typically unaware of the category rules. Consistent with previous studies involving patients with degenerative disorders of the basal ganglia,
he stroke patients were impaired on the rule-based task, and quantitative, model-based analyses indicate that this deficit was due to the inefficient
pplication of decision strategies. In contrast, the patients were unimpaired on the information-integration task. This pattern of results provides
onverging evidence supporting a role of the basal ganglia and, in particular, the putamen in rule-based category learning.

2006 Elsevier Ltd. All rights reserved.
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Category learning has been one of the cornerstone areas of
tudy in cognitive psychology. With the emergence of cog-
itive neuroscience, the neural substrates of this ability have
eceived much attention over the past decade (see Ashby &
piering, 2004; Keri, 2003 for reviews). The basal ganglia have
een a focal point of inquiry in this research, behaviorally
e.g., Knowlton, Mangels, & Squire, 1996; Shohamy, Myers,
nlaor, & Gluck, 2004), computationally (Ashby, Alfonso-
eese, Turken, & Waldron, 1998; Brown, Bullock, & Grossberg,
999; Frank, 2005), and in neuroimaging studies (Poldrack et
l., 2001; Seger & Cincotta, 2002). To date, neuropsychological
tudies of the role of the basal ganglia in category learning have
ocused on patients with degenerative disorders of the basal gan-

lia, and in particular, patients with Parkinson’s disease. In the
urrent study, we extend this work by testing patients with focal
esions of the basal ganglia due to stroke.
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210 Tolman Hall #1650, Berkeley, CA 94720-1650, United States.
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Testing patients with focal lesions has several advantages
ompared to those with degenerative disorders. First, unlike
arkinson patients, dopaminergic projections to prefrontal cor-

ex are likely to be normal as long as the lesion excludes the
ubstantia nigra pars compacta, ventral tegmental area, and inter-
al capsule. Second, patients with focal lesions offer a better
pportunity to relate structure to function in that one can ask if
bserved deficits are related to the site of the lesion. Third, they
rovide an opportunity to evaluate if deficits require bilateral
asal ganglia pathology.

An additional goal of the present study is to determine
hether focal basal ganglia lesions affect learning in both

ule-based and information-integration category learning tasks
Ashby & Ell, 2001). Rule-based tasks are those in which the
ategories can be learned by an explicit reasoning process. Fre-
uently, the rule that maximizes accuracy (i.e., the optimal rule)
an easily be described verbally (Ashby et al., 1998). In many
pplications, only one stimulus dimension is relevant (e.g., line

ength), and the participant’s task is to identify the relevant
imension and then map the different dimensional values to the
elevant categories. Rule-based tasks are assumed to be learned
ia a hypothesis-testing process that is dependent on working

mailto:shawnell@socrates.berkeley.edu
dx.doi.org/10.1016/j.neuropsychologia.2006.03.018
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emory and executive functions (Ashby et al., 1998). Indeed,
he Wisconsin Card Sorting task, one of the standard tools for
ssessing executive function, is in essence a rule-based catego-
ization task.

In contrast, information-integration tasks are those in which
ccuracy is maximized when information from two or more
imensions (e.g., line length and orientation) is integrated at
ome pre-decisional stage (Ashby et al., 1998). The type of
ntegration required could take any number of forms, from

weighted combination of the two dimensions (Ashby &
ott, 1988; Garner, 1974) to more holistic processing (e.g.,
emler Nelson, 1993) to the incremental acquisition of stimulus-

esponse associations (Ashby & Waldron, 1999), but the criti-
al point is that integration occurs prior to any decision pro-
esses (Ashby et al., 1998). Unlike rule-based tasks, partici-
ants have difficulty verbalizing the optimal decision strategy in
nformation-integration tasks, despite being able to successfully
earn the categories (Ashby et al., 1998).

Behavioral evidence suggests that qualitatively different
ystems are engaged during category learning in rule-based and
nformation-integration tasks (see Ashby & Maddox, 2005;

addox & Ashby, 2004 for reviews). Learning in information-
ntegration tasks is more sensitive to the timing (Maddox,
shby, & Bohil, 2003) and nature of trial-by-trial feedback

Ashby, Maddox, & Bohil, 2002), and more closely linked
o motor systems (Ashby, Ell, & Waldron, 2003). Rule-based
asks are more sensitive to dual task interference (Waldron

Ashby, 2001; Zeithamova & Maddox, in press) and other
anipulations designed to tax working memory (Maddox,
iloteo, Hejl, & Ing, 2004).

In contrast to the wealth of behavioral data comparing rule-
ased and information-integration tasks, there is a paucity of
tudies investigating the neural substrates of these two tasks.
he available neuroimaging data suggest that activity in the
asal ganglia is correlated with learning in both tasks (Filoteo,
addox, Simmons et al., 2005; Nomura et al., in press;

eger & Cincotta, 2002). For instance, Nomura and colleagues
bserved that successful categorization (i.e., correct–incorrect
rials) was correlated with activity in the right body of the
audate nucleus in a rule-based task and bilateral activity in
he body and tail of the caudate in an information-integration
ask.

The role of the basal ganglia in categorization has been
he focus of several neuropsychological studies. Patients with
arkinson’s disease have consistently been found to be impaired
n rule-based tasks (Brown & Marsden, 1988; Cools, van den
ercken, Horstink, van Spaendonck, & Berger, 1984; Downes
t al., 1989; Maddox, Aparicio, Marchant, & Ivry, 2005).
nterestingly, these studies have all used tasks that required
elective attention to a single stimulus dimension in order to
aximize accuracy. At least for Parkinson’s patients, this detail
ay be critical as the degree of their impairment increases with

he number of irrelevant dimensions (Filoteo, Maddox, Ing,

izak, & Song, 2005). Moreover, no impairment was observed
n a rule-based task that required the participants to attend to
ll stimulus dimensions (Filoteo, Maddox, Ing, & Song, 2005;
addox & Filoteo, 2001).
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Patients with degenerative disorders of the basal ganglia have
een found to be impaired on information-integration tasks
s well (Filoteo, Maddox, & Davis, 2001; Filoteo, Maddox,
almon, & Song, 2005). The information-integration tasks used

n these studies comprised two categories and either required
he linear or nonlinear integration of the stimulus dimensions.
iloteo et al. (Filoteo, Maddox, Salmon et al., 2005; see also
addox & Filoteo, 2001) reported an intriguing dissociation in

hat Parkinson’s patients were only impaired on an information-
ntegration task involving a nonlinear decision bound. However,
atients with Huntington’s disease were impaired in both the lin-
ar and nonlinear cases, although the former deficit was limited
o the initial training blocks (Filoteo et al., 2001).

Two studies have investigated rule-based and information-
ntegration category learning in the same sample of patients.
shby and colleagues (Ashby, Noble, Filoteo, Waldron, & Ell,
003) compared the performance of patients with Parkinson’s
isease to control participants on rule-based and information-
ntegration tasks. The stimuli comprised four binary-valued
imensions. For successful performance on the rule-based
ask, participants had to attend to a single relevant dimen-
ion and ignore three irrelevant dimensions. Conversely, on the
nformation-integration task, participants had to attend to three
imensions and ignore a single irrelevant dimension. Parkin-
on’s patients were selectively impaired on the rule-based task.
urprisingly, when rule-based and information-integration tasks
ere equated for the number of relevant dimensions, Parkinson’s
atients were unimpaired in both tasks (Filoteo, Maddox, Ing,

Song, 2005).
To our knowledge, only one study has investigated the impact

f a focal basal ganglia lesion on category learning (Keri et al.,
002). Compared to a group of control participants, a patient
ith a lesion of the right neostriatum (i.e., caudate and puta-
en) was impaired on a probabilistic classification task (i.e., the
eather prediction task, Knowlton, Squire, & Gluck, 1994). This

ask is typically considered a type of an information-integration
ask given that optimal performance requires integrating infor-

ation from four cues (Ashby & Ell, 2001). However, analyses
f individual differences suggests that participants frequently
ely upon unidimensional rule-based strategies and memoriza-
ion (Gluck, Shohamy, & Myers, 2002).

In sum, while the neuropsychological studies indicate that
egenerative disorders of the basal ganglia impair category
earning, it remains unclear if this deficit extends to both rule-
ased and information-integration tasks. One problem in com-
aring performance on rule-based and information-integration
asks is that they frequently differ in terms of difficulty, optimal
ccuracy, and/or the number of relevant dimensions. Moreover,
he literature indicates that various factors influence the degree of
he observed impairments even within these two broad classes.

In the current study, we test a group of patients with
ocal basal ganglia lesions on the rule-based and information-
ntegration categorization tasks introduced by Maddox, Bohil,

nd Ing (2004). The stimuli were lines that varied in length
nd orientation, assigned to one of four categories (Fig. 1). We
elected stimulus sets such that the two tasks were equated on
ask difficulty, optimal accuracy, and the number of relevant
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Seven patients (one female) with unilateral damage to the basal ganglia
resulting from stroke were recruited for this experiment. The patients were
recruited from the VA Medical Center in Martinez, CA. The lesion was restricted
to the left side for six of the patients and to the right side in the other patient.

the complexity of a rule (e.g., the number of “and” and “or” operators in a logical
expression of the rule). Nonetheless, it is reasonable to assume that as complex-
ig. 1. Scatterplot of the stimuli in length–orientation space in the two tasks (
epresents a single stimulus. Category 1 exemplars are plotted as plus signs, Ca
’s. The solid lines are the optimal decision boundaries.

imensions (Maddox, Filoteo et al., 2004). For both tasks, par-
icipants should attend to both length and orientation. Optimal
erformance on the rule-based task requires that the participants
dopt a conjunction strategy that involves a two-stage decision
rocess (Ashby & Gott, 1988; Shaw, 1982). First, separate deci-
ions should be made about the value of the stimulus on length
nd orientation (e.g., “Is the line short or long?”; “Is the line shal-
ow or steep?”). Second, the outputs of the first stage decision
rocess should be combined to make a categorization decision
e.g., “If the line is short and shallow, Respond 1”; “If the line
s short and steep; Respond 2”; etc.) – that is, the integration of
ength and orientation is post-decisional. Similar to rule-based
asks used in previous work (e.g., Ashby et al., 1998), it has
een argued that the optimal decision rule can be easily verbal-
zed (Maddox, Filoteo et al., 2004).

For the information-integration task, the categories were cre-
ted by rotating the rule-based categories 45◦ counterclockwise.
ptimal performance in this task requires the integration of

ength and orientation information. The strategies that maximize
ccuracy in the information-integration task assume that integra-

ion occurs prior to making a categorization decision – that is,
he integration is pre-decisional (Ashby et al., 1998; Ashby &
ott, 1988; Maddox, Filoteo et al., 2004).1 That is not to say that

1 Note that we are using a more restricted definition of a rule than is common in
he psychological literature (e.g., see Bunge, 2004). Specifically, we use the term
ule to refer to an explicit reasoning process. Such a definition places no limit on
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anels) along with example stimuli (right panels). Each point in the scatterplot
2 exemplars as circles, Category 3 exemplars as diamonds, and Category 4 as

ule-based strategies are never used in information-integration
asks. Indeed, rule-based strategies, such as the conjunction rule
hown in the top half of Fig. 1, are often used early in train-
ng with information-integration tasks. Performance with such
ule-based strategies is non-optimal and, over time, most par-
icipants shift to an information-integration strategy (e.g., Ell &
shby, in press). The latter do not lend themselves to a simple

nd coherent verbal description (Maddox, Filoteo et al., 2004).

. Method

.1. Participants and design
ty increases, the salience of a rule will decrease (Alfonso-Reese, 1997) as will
he likelihood that participants will use an explicit reasoning process (Ashby
t al., 1998). To be certain, the boundary conditions on what exactly consti-
utes a rule are fuzzy. However, our claim that conjunction strategies involve an
xplicit reasoning process is consistent with previous work (Ashby & Gott, 1988;
addox, Filoteo et al., 2004; Salatas & Bourne, 1974; Shaw, 1982; Shepard,
ovland, & Jenkins, 1961). Importantly, recent evidence supports the distinction
e make between conjunction strategies and information-integration strategies

Filoteo, Maddox, Ing, & Song, 2005; Maddox, Bohil, & Ing, 2004; Zeithamova
Maddox, in press).



1 holog

T
t

p
m
B
n

i
a

F
o
t
2

740 S.W. Ell et al. / Neuropsyc

he greater representation of patients with left-sided damage was due to the fact
hat some referrals came from a speech rehabilitation clinic.
Lesion reconstructions for six of the patients are presented in Fig. 2. The
athology was centered in the basal ganglia, with evidence of putamen involve-
ent in all seven patients. The lesion extended into the caudate for one patient,
G01. There was evidence that the lesions also extended into white matter (inter-
al, external, and extreme capsules) for some patients and may have included

p
l
2
p
h

ig. 2. Lesion reconstruction (in white) for six of the patients with lesions of the bas
f −24, −16, −8, 0, 8, 16, 24, 32, 40, 50, and 60 mm. The striatum (putamen and ca
hrough 16. Figures were generated with the MRIcro software package (Rorden & B
001). We were unable to obtain access to a digital copy of the scan for one patient, B
ia 44 (2006) 1737–1751

nsular cortex for one patient (BG11). Patient BG09 displayed slight cerebellar
trophy. We decided to include this patient in the basal ganglia group because

revious research has shown that, across a variety of tasks, patients with cerebel-
ar lesions are unimpaired in category learning (Ell & Ivry, 2005; Maddox et al.,
005; Witt, Nuhsman, & Deuschl, 2002). Thus, any impairment in this patient’s
erformance is unlikely to result from the cerebellar atrophy. Based on medical
istories, patients BG01 and BG12 may have experienced an additional stroke

al ganglia, presented on 11 axial slices corresponding to Talarach coordinates
udate) is present in sections −8 through 24; the globus pallidus in sections −8
rett, 2000) using procedures described in (Brett, Leff, Rorden, & Ashburner,
G01.
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Table 1
Participant demographic information

Basal ganglia patients Control participants

ID Age at
test

ED Lesion
hemisphere

Year of
stroke

ID Age at
test

ED

BG09 56 13 Left 1997 MP04 57 17
BG10 68 13 Left 1994 MP03 54 14
BG01 80 14 Left 1974

and
1983

MP15 59 16

BG02 54 16 Right 2001 MP05 50 12
BG11 46 8 Left 2002 MP11 53 13
BG12 55 17 Left 1992

and
2002

MP30 58 14

BG13 63 14 Left 2003 OP30 65 12
OP31 63 17
MP10 46 12

Mean 60.3 13.6 56.1 14.1
S.D. 11.2 2.9 6.1 2.1
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ote. ID: participant identification code; BG: basal ganglia patients; MP: middle-
ged participants; OP: older participants; ED: years of education.

n the thalamic region. However, these lesions were contiguous with damage
rom the basal ganglia strokes. We opted to include these patients in the study.

Nine (four female) control participants were recruited from the Berkeley
ommunity. The controls were screened for the presence of a neurological
isorder or a history of psychiatric illness and selected to span the range of
he patients in terms of age, education, and IQ. Demographic information
or the patients and controls is provided in Table 1. Basal ganglia and con-
rol groups were reasonably matched on age [t(14) = 1.0, p = .4] and education
t(14) = −.4, p = .7]. All participants reported 20/20 vision or vision corrected to
0/20.

The participants were tested on the rule-based and information-integration
asks in two different sessions. The sessions were separated by a minimum of

week to minimize interference between the two tasks. Each session lasted
pproximately 2 h, including an hour of neuropsychological testing. The order
f the categorization tasks between sessions and the order of the within-session
asks (categorization and neuropsychological assessment) were counterbalanced
cross participants. Participants were monetarily compensated.

The study protocol was approved by the institutional review boards of the
A Medical Center in Martinez and University of California, Berkeley.

.2. Neuropsychological assessment

A battery of neuropsychological tests was used to assess different aspects of
ognitive function in both patients and controls. The Mini Mental State Exam
MMSE) was used to screen for dementia. Subtests of the Wechsler Adult
ntelligence Scale – Third Edition (WAIS-III, Wechsler, 1997) were used to cal-
ulate verbal IQ, performance IQ, and full scale IQ. Standardized scores from
he Vocabulary, Similarities, Arithmetic, Digit Span, and Information WAIS-III
ubtests generated a prorated verbal IQ. Standardized scores from the Picture
ompletion, Matrix Reasoning, Picture Arrangement, Symbol Search WAIS-

II subtests generated a prorated performance IQ. Verbal learning and memory
as assessed using the California Verbal Learning Test (CVLT, Delis, Kramer,
aplan, & Ober, 1984). The CVLT includes an initial learning phase comprising
16 item word list (repeated over 5 blocks). Recall and recognition memory
ere subsequently probed following a delay.

In rule-based tasks (and possibly to a lesser extent in information-integration

asks), learning is assumed to be highly dependent upon working memory and
xecutive processes (see Ashby et al., 1998; Ashby & Maddox, 2005 for reviews).
hus, neuropsychological tests were included to assess these functions. Stan-
ardized scores from the Digit Span, Arithmetic, and Letter-Number Sequencing
ubtests provided a working memory index. Language production and executive
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ia 44 (2006) 1737–1751 1741

bilities were assessed using the verbal fluency subtest from the Delis-Kaplan
xecutive Function System (D-KEFS – Delis, Kaplan, & Kramer, 2001) which

ncludes phonemic, semantic, and a more complex semantic switching task. We
id not include a specific test for aphasia. Some of the patients had been treated
n a speech and language clinic prior to their referral to our study (and thus, the
reater representation of patients with left-sided lesions). However, informal
bservation indicated that none of the patients demonstrated overt aphasic prob-
ems, and all were able to readily understand the task instructions. As assessed
y the Beck Depression Inventory (2nd ed.) (BDI – Beck, Steer, & Brown,
996), none of the patients or control participants was found to have symptoms
f clinical depression.

.3. Stimuli and stimulus generation

One-hundred stimuli were used in the rule-based or information-integration
asks, with 25 assigned to each of the four response categories (see Fig. 1).
o create these structures, we used the randomization technique introduced by
shby and Gott (1988) in which each category was defined as a bivariate normal
istribution with a mean and a variance on each dimension, and by a covariance
etween dimensions. The exact parameter values were taken from Maddox et al.
2004). Random samples (x, y) were drawn from the distribution for one of the
our categories, and these values were used to construct lines of length × pixels
nd orientation y × (π/500) radians. The scale factor (π/500) was selected based
pon past research in an effort to equate the discriminability of changes in per-
eived length to changes in perceived orientation. The information-integration
ategory structure was generated by rotating the rule-based category structure
5◦ clockwise around a central point located at 150 pixels in length (4◦ of visual
ngle) and 150 orientation units (i.e., 54◦ from horizontal). Twenty-five stimuli
ere randomly sampled, from each of the four category distributions to select

he set of 100 stimuli for each task. A linear transformation was performed to
nsure that the sample and population means, variances, and covariances were
dentical. The order of the resulting 100 stimuli was randomized separately for
ach block and each participant.

Each stimulus was presented on a black background and subtended a visual
ngle ranging from 0.7◦ to 7.3◦ at a viewing distance of approximately 60 cm.
he stimuli were generated and presented using the Psychophysics Toolbox
xtensions for MATLAB (Brainard, 1997; Pelli, 1997). The stimuli were dis-
layed on either a 15′′ CRT with 1024 × 768 pixel resolution in a dimly lit room
r on a laptop LCD of the same resolution when patients were tested in their
ome. The length of the stimuli were scaled to equate the range of visual angles
n the present experiment to those used by Maddox et al. (2004).

.4. Procedure

On each trial, a single stimulus was presented and the participant was
nstructed to make a category assignment by pressing one of four response keys
ith either index finger. The instructions emphasized accuracy and there was
o response time limit. After responding, feedback regarding the correctness of
he response (correct: green cross; incorrect: red cross) along with the correct
ategory label was presented in the center of the screen for 1 s. The screen was
hen blanked for 500 ms prior to the appearance of the next stimulus. In addition
o trial-by-trial feedback, feedback was given at the end of each block of 100
rials regarding the participant’s accuracy during that block. The participant was
old that there were four equally likely categories and informed that the best
ossible accuracy was 95% (i.e., optimal accuracy).

A standard keyboard was used to collect responses. The keyboard characters
z’, ‘w’, ‘/’, and ‘p’ were assigned to categories 1–4, respectively. Following,

addox et al. (2004), the category numbers did not appear on the response keys
nd the response mappings were fixed across participants. Great care was taken
o instruct the participants as to the category-response key mappings.

Each participant completed one practice and five test blocks of 100 trials for
ach task. Within each block, the ordering of the 100 stimuli was randomized.

he experimenter closely monitored performance during the practice block,

epeating the instructions as needed and providing encouragement. When nec-
ssary, the experimenter would remind the participants of the category-response
ey mappings during the practice block. All participants were able to accurately
roduce the category-response key mappings by the end of the practice block.
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Digit Span Backward: t(11) = −.88, p = .40]. Within the D-
KEFS, the patients were significantly worse than control group
in the letter and category fluency tasks. In general, the pic-
ig. 3. Average accuracy (±S.E.M.) in the rule-based and information-
ntegration tasks. BG: basal ganglia patients; CO: control participants.

hey then completed the five test blocks without further interruption other than
brief break between blocks.

We requested that participants respond using both hands (left hand for the ‘z’
nd ‘w’ keys and right hand for the ‘/’ and ‘p’ keys). We did not expect perfor-
ance to vary between the two hands given that the response requirements were
inimal (e.g., speed was not emphasized) and that patients with chronic focal

asal ganglia lesions show little evidence of motor impairment (e.g., Aparicio,
iedrichsen, & Ivry, 2005). Indeed, error rates did not differ as a function of

he hand used to respond in the current study. One participant (BG10) reported
iscomfort in using his contralesional hand and thus made all responses with
he ipsilesional hand.

. Results and discussion

.1. Accuracy-based analyses

Inspection of the learning curves suggests that the basal gan-
lia patients were impaired on the rule-based task, but not on the
nformation-integration task (Fig. 3). Interestingly, this impair-

ent appeared to be limited to early in training. These obser-
ations were confirmed by separate 5 block × 2 group mixed
NOVAs. In the rule-based task, the main effect of block was

ignificant [F(4, 56) = 53.34, p < .001, MSE = 25.95, η2
p = .79],

ut this was qualified by a significant block × group interac-
ion [F(4, 56) = 7.31, p < .001, MSE = 25.95, η2

p = .34]. The main
ffect of group was not significant [F(1, 14) = 1.68, p = .22,
SE = 1301.82, η2

p = .11]. Pairwise comparisons revealed that

he interaction was driven by accuracy rates in the basal gan-
lia group that were significantly lower than the control group
uring block 1 (p = .03) and marginally significant during
lock 2 (p = .08). None of the remaining pairwise comparisons
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ia 44 (2006) 1737–1751

ere significant (block 3: p = .40; block 4: p = .53; block 5:
= .63).

The individual accuracy rates from blocks 1 and 2 of the rule-
ased task are given in Table 2. With chance performance at 25%,
t is evident that some learning had occurred by the end of the
rst block. Three of the seven patients were responding correctly
n at least half of the trials; the same was true for seven of the
ine control participants. While there is considerable overlap
etween the two distributions, five of the patients performed
elow the mean of the control group across blocks 1 and 2.

In the information-integration task, the main effect of
lock was significant [F(4, 56) = 11.70, p < .001, MSE = 41.89,
2
p = .46]. However, neither the block × group interaction [F(4,

6) = .23, p = .92, MSE = 41.89, η2
p = .02] nor the main effect

f group [F(1, 14) = 0, p = .99, MSE = 763.06, η2
p = 0] were

ignificant.2 Post-hoc analyses revealed that accuracy signifi-
antly increased from block 1 to block 2 (p = .02), block 2 to
lock 3 (p = .02), block 3 to block 4 (p = .01), but not from block
to block 5 (p = .88).
One possible explanation for the selective impairment in

he rule-based task is that it was simply more difficult than
he information-integration task. To address this question, a 5
lock × 2 task repeated measures ANOVA was conducted on the
ata from the control participants. The main effect of block was
ignificant [F(4, 32) = 24.89, p < .001, MSE = 25.43, η2

p = .76].
mportantly, neither the main effect of task [F(1, 8) = 1.95,
< .20, MSE = 150.75, η2

p = .20] nor the block × task interaction

F(4, 32) = .97, p = .44, MSE = 40.20, η2
p = .11] were significant.

hus, while based on a null result, the results from the control
articipants indicate that the tasks were of comparable difficulty.

.2. Relationship between accuracy on categorization tasks
nd demographic, neuropsychological, and
europathological variables

As shown in Table 2, the groups were within one stan-
ard deviation of each other on most of the neuropsychological
ssessments. In general, there was a trend for the patients to
erform worse on the CVLT, working memory, and executive
unction assessments. The patients were marginally impaired in
he learning phase of the CVLT. This difference did not extend to
ubsequent tests of recall and recognition. Overall, the patients’
core on the working memory index was not significantly lower
han the controls, but the patients were significantly worse
n the Arithmetic and Letter-Number Sequencing subtests.
Arithmetic: t(11) = −2.24, p = .05; Letter-Number Sequencing:
(11) = −2.7, p = .02; Digit Span Forward: t(11) = −.96, p = .36;
2 We performed a more fine-grained analysis to test whether an early learning
mpairment on the information-integration task might be found across the 100
rials of block 1. Repeating the ANOVAs with 25-trial mini-blocks yielded the
ame results as in the main analyses: The group × block interaction was only
ignificant for the rule-based task.
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Table 2
Neuropsychological assessment

ID MMSE WAIS-III D-KEFS CVLT Accuracy in RB task

VIQ PIQ FSIQ WM
index

Letter
fluency CR

Category
fluency CR

Switching
fluency CR

Number of
correct
switches

CR during
learning (raw
score/80)

Long delay
free recall

Recognition
discriminability
index

Block 1 Block 2

Basal ganglia patients
BG09 29 105 99 103 88 26 37 12 11 42 13 3.4 27.3 39.0
BG10 28 119 107 115 113 – – – – 36 7 2.9 69.0 77.0
BG01 28 116 114 116 109 36 23 14 12 40 13 3.7 35.0 47.0
BG02 28 117 98 109 111 37 31 15 14 40 6 1.8 43.0 66.0
BG11 29 75 79 80 80 27 34 7 5 36 7 2.3 28.9 32.0
BG12 29 111 117 114 94 30 36 17 15 56 13 3.7 53.0 60.0
BG13 29 111 97 104 97 33 33 12 12 27 10 3.1 65.0 86.0

Mean 28.6 107.7 101.6 105.9 98.9 31.5 32.3 12.8 11.5 39.6 9.9 3.0 45.9 58.1
S.D. .5 15.2 12.7 12.5 12.6 4.6 5.1 3.4 3.5 8.8 3.2 0.7 16.9 19.9

Control participants
MP04 30 143 117 135 136 56 44 15 14 – – – 77.0 92.0
MP03 30 119 105 113 117 37 37 14 13 60 15 3.70 85.0 91.0
MP15 30 119 130 127 111 53 44 19 18 – – – 85.0 94.0
MP05 30 117 127 123 109 65 67 17 15 64 13 3.70 64.0 82.0
MP11 26 113 105 110 99 71 49 12 13 53 14 3.70 48.0 55.0
MP30 30 133 127 134 117 63 57 14 12 44 11 2.70 59.0 68.0
OP30 29 104 105 104 102 49 42 16 15 35 7 2.80 43.0 47.0
OP31 29 124 94 111 108 – – – – 44 10 3.00 68.0 79.0
MP10 28 72 76 72 90 42 37 13 10 45 7 2.20 54.0 69.7

Mean 29.1 116.0 110.0 114.3 110.0 54.5 47.1 15.0 13.8 49.3 11.0 3.1 64.8 75.3
S.D. 1.4 20.0 17.7 19.3 13.1 11.7 10.3 2.3 2.4 10.2 3.2 0.6 17.1 19.1

t −1.0 −0.9 −1.0 −1.0 −1.7 −4.5 −3.2 −1.4 −1.4 −1.9 −.67 −.4
p 0.3 0.4 0.3 0.3 0.1 .001* .008* 0.2 0.2 .08 .52 .7

Note. ID: participant identification code; BG: basal ganglia patients; MP: middle-aged participants; OP: older participants; MMSE: Mini Mental State Exam; WAIS-III: Wechsler Adult Intelligence Scale III; VIQ:
verbal IQ; PIQ: performance IQ; FSIQ: full scale IQ; D-KEFS: Delis-Kaplan Executive Functioning System; CR: correct responses; CVLT: California Verbal Learning Test; RB: rule-based. All t-tests computed as
BG–CO.

* Significant difference between BG and CO groups at p = .05.
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ure of a mild to moderate deficit in executive functioning for
atients with focal basal ganglia lesions is consistent with pre-
ious assessments (Keri et al., 2002; Troyer, Black, Armilio, &
oscovitch, 2004).
Given the individual variability in accuracy in the basal gan-

lia group, we asked whether any of the neuropsychological
ariables may be related to the observed impairment in category
earning. To assess this question, accuracy on the rule-based
ask, averaged over blocks 1 and 2, was correlated with these
ariables. The same analysis was performed on the data from
he control group for comparison purposes. As can be seen in
able 3, the correlations for the patients were generally positive,
specially those between accuracy and measures of intelligence
nd executive function, although they failed to achieve standard
ignificance levels. Interestingly, there was also a marginally
ignificant correlation between accuracy and the working mem-
ry index for the control participants. In light of the sizeable,
lbeit non-significant difference between the basal ganglia and
ontrol groups on the working memory index, it is possible that
working memory deficit may underlie the impairment in the

ule-based task. This analysis is far from conclusive given the

nconsistent pattern of results across the various working mem-
ry subtests and the low reliability of these correlations due to
he small sample size.

able 3
orrelations between demographic and neuropsychological variables and accu-

acy, averaged across blocks 1 and 2, in the rule-based task

BG CO

r p r p

ge .30 .52 −.08 .85
D .47 .29 .65 .06

AIS-III
VIQ .62 .14 .45 .23
PIQ .34 .46 .35 .36
FSIQ .51 .24 .45 .23
WM index .56 .19 .62 .07
Arithmetic .71 .11 .69 .09
Letter-Number Sequencing .77 .08 .49 .27
Digit Span Forward .61 .20 .76 .05*

Digit Span Backward .67 .15 −.05 .92

KEFS
Letter fluency CR .50 .32 −.30 .47
Category fluency CR .02 .97 −.10 .82
Switching fluency CR .46 .36 .45 .27
Number of correct switches .60 .21 .36 .38

VLT
CR during learning −.28 .54 .65 .11
Long delay free recall −.24 .60 .54 .21
Recognition discriminability index 0 1 .37 .42

esion volume −.05 .92 – –

ote. BG: basal ganglia patients; CO: control participants; WAIS-III: Wechsler
dult Intelligence Scale III; ED: years of education; VIQ: verbal IQ; PIQ: perfor-
ance IQ; FSIQ: full scale IQ; WM: working memory; D-KEFS: Delis-Kaplan
xecutive Functioning System; CR: correct responses; CVLT: California Verbal
earning Test.
* Significant correlation at p = .05.
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There was also considerable variability in lesion volume
cross participants. Therefore, one hypothesis is that the impair-
ent in the rule-based task may be related to the size of the

athology. However, lesion volume was not significantly cor-
elated with accuracy in the rule-based task (see Table 3). The
haracteristics of our sample of patients (i.e., six individuals
ith lesions to the left basal ganglia and only one with a lesion

o the right basal ganglia) did not permit a test of the relative
mportance of the left and right basal ganglia in rule-based and
nformation-integration category learning tasks. BG02, the one
atient with a right-sided lesion performed near the basal gan-
lia group average during blocks 1 and 2 in the rule-based task
see Table 2) and consistently above average in the remaining
locks (block 3: 86.9; block 4: 91; block 5: 87.9).

.3. Model-based analyses

The analysis of the accuracy data revealed a selective impair-
ent of the basal ganglia patients early in performance on the

ule-based task. To further explore the basis of this impair-
ent, we now turn to model-based analyses that can evaluate

ifferent ways in which the patients might have difficulty on
he rule-based task. For example, a learning impairment might
esult from the use of a suboptimal strategy. Alternatively, the
articipant might choose the correct strategy, but apply it incon-
istently. The following analyses present a quantitative approach
o evaluating these hypotheses.

To get a more detailed description of how participants cat-
gorized the stimuli, a number of different decision bound
odels (Ashby, 1992a; Maddox & Ashby, 1993) were fit sepa-

ately to the data for every participant from every block. Deci-
ion bound models are derived from general recognition theory
Ashby & Townsend, 1986), a multivariate generalization of
ignal detection theory (Green & Swets, 1966). It is assumed
hat, on each trial, the percept can be represented as a point
n a multi-dimensional psychological space and that each par-
icipant partitions the perceptual space into response regions
y constructing a decision bound. The participant determines
hich region the percept is in, and then makes the correspond-

ng response. Despite this deterministic decision strategy, deci-
ion bound models predict probabilistic responding because
f trial-by-trial perceptual and criterial noise (Ashby & Lee,
993).

Two different types of decision bound models were fit to
ach participant’s responses. One type assumes that participants
se a rule-based decision strategy and one type assumes an
nformation-integration strategy (see the Appendix A for details
f the specific models and model fitting procedures). These mod-
ls make no detailed processing assumptions in the sense that
number of different process-based accounts are compatible
ith each of the models (e.g., Ashby, 1992a; Ashby & Waldron,
999). Thus, if an information-integration model fits signifi-
antly better than a rule-based model, we can be confident that

articipants did not use a rule-based strategy even though we
annot specify which information-integration strategy was used.
imilarly, if a rule-based model fits significantly better than the

nformation-integration models, we gain evidence that the par-
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Table 4
Summary of the results of the model-based analyses from the rule-based and
information-integration tasks

Basal ganglia patients (n = 7) Controls (n = 9)

Block %Rule-
based

%RA Block %Rule-
based

%RA

Mean S.E.M. Mean S.E.M.

Rule-based task
1 85.7 49.9 6.8 1 67.7 72.9 3.7
2 71.4 59.9 8.7 2 88.9 76.7 5.5
3 85.7 73.3 6.1 3 67.7 80.6 5.3
4 71.4 78.4 5.0 4 88.9 85.2 4.0
5 85.7 80.8 4.4 5 88.9 84.2 5.5

Information-integration task
1 14.3 72.1 8.6 1 44.4 73.3 6.8
2 28.6 70.4 5.8 2 33.3 74.2 6.3
3 14.3 77.1 4.2 3 44.4 81.7 3.6
4 0 85.9 2.5 4 33.3 82.0 5.1
5 14.3 88.4 2.6 5 44.4 79.4 4.8
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previous work (e.g., Maddox et al., 2005), we used the noise esti-
mates from the optimal rule-based model as a measure of criterial
noise (Fig. 4).4 Throughout the experiment, the patients exhib-
ote. %Rule-based: percent of participants whose data were best-fit by an rule-
ased model; %RA: percent of responses accounted for by the best-fitting model.

icipant used a rule-based strategy, although we cannot rule out
ll information-integration strategies because some of these can
imic rule-based responding. Thus, the modeling described in

his section provides a formal vehicle to test hypotheses about
he decision strategies used by participants, even though it has
ittle to say about psychological process.

The percentage of data sets best accounted for by rule-based
ecision strategies in the rule-based and information-integration
asks is given in Table 4. As expected, the majority of participants
n the rule-based task were best-fit by rule-based strategies and
he majority of the participants in the information-integration
ask were best-fit by information-integration strategies. In addi-
ion, the average percent of responses accounted for by the
est-fitting model is listed in Table 4. For the models investi-
ated here, this statistic has a lower bound of 25% (i.e., random
esponding) and an upper bound of 100%. While it is clear that
he models did not provide a perfect account of these data, on
verage, the best-fitting models accounted for a greater percent-
ge of the responses than would be predicted by chance for both
roups.

A comparison of basal ganglia and control groups in the
ule-based task reveals no differences in the frequency of use
f rule-based strategies [block 1: χ2 (1) = .38, p = .59; block
: χ2 (1) = .38, p = .55; block 3: χ2 (1) = .38, p = .59; block 4:
2 (1) = .38, p = .55; block 5: χ2 (1) = .85, p = 1.0].3 Interest-

ngly, in the information-integration task there was a consistent
rend across blocks for basal ganglia patients to be less likely to
se rule-based strategies (i.e., more likely to use information-
ntegration strategies) than control participants. This difference,

owever, did not reach statistical significance in any block [block
: χ2 (1) = .20, p = .31; block 2: χ2 (1) = .84, p = 1.0; block
: χ2 (1) = .20, p = .31; block 4: χ2 (1) = .09, p = .21; block

3 Fisher’s exact test was used because there were fewer than five cases in at
east one cell.

b
G
s
n
s
a

ig. 4. Average criterial noise estimates (±S.E.M.) from the optimal rule-based
odel. These data have been log transformed to correct for a positive skew in

he sample distributions. BG: basal ganglia patients; CO: control participants.

: χ2 (1) = .20, p = .31].3 Nevertheless, the increased use of
nformation-integration strategies by the basal ganglia patients

ay reflect a competitive process – an issue to which we return
n Section 3.

While limited by the small sample size, it would appear that a
ualitative difference in strategy cannot explain the impairment
f the basal ganglia patients early in training on the rule-based
ask. Another possibility is that patients may have been attending
electively to either length or orientation when making cate-
orization decisions. Such a unidimensional strategy is highly
uboptimal when compared to the optimal strategy – i.e., a con-
unction rule in which there is a single decision criterion on
ength and orientation (see Appendix A). Comparing the number
f participants using unidimensional strategies, however, reveals
ittle difference between groups (basal ganglia patients: block 1
0/7, block 2 – 1/7; control participants: block 1 – 1/9, block 2 –
/9). These data suggest that the impairment in the basal ganglia
atients was not driven by the use of suboptimal, unidimensional
ecision strategies.

A different source of the learning impairment for the patients
ay be increased trial-by-trial variability in the decision strat-

gy (or criterial noise). Consistent with analyses performed in
4 All of the models investigated include a free parameter to reflect the com-
ined trial-by-trial variability in perceptual and criterial noise (Ashby, 1992a).
iven that the stimuli were displayed at high contrast and that the duration of

timulus presentation was unlimited, it is reasonable to assume that this inter-
al noise primarily reflects variability in the decision criteria. Furthermore, the
uccess of the basal ganglia patients in the information-integration task would
lso argue against a general perceptual deficit.
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Fig. 5. Probability of a correct response for each stimulus. The shading of each
point represents the probability that the stimulus was correctly classified. Darker
c
d
C

t
i
b
a
i
1
c
e
p
t
i
p

t
d
t
o
t
a
c
e
s

746 S.W. Ell et al. / Neuropsyc

ted increased criterial noise relative to controls. The greatest
eficit, however, occurred during the blocks in which accu-
acy was also impaired. An analysis of Fig. 4 data showed
main effect of block [F(4, 56) = 40.74, p < .001, MSE = .01,

2
p = .74], but not group [F(1, 14) = 2.50, p = .14, MSE = .43,
2
p = .15]. However, there was a significant block × group inter-

ction [F(4, 56) = 5.32, p = .001, MSE = .01, η2
p = .28], driven by

significant difference in criterial noise during block 1 (p = .02)
nd a marginally significant difference during block 2 (p = .07).
one of the remaining pairwise comparisons were significant

p > .14).5

The finding of increased criterial noise for the basal
anglia patients has multiple interpretations. If the increased
oise represented increased variability in the application of
ear-optimal decision strategies, then the error rates should
e greatest for stimuli near the category boundaries. Such
rrors would likely reflect on-going tuning of this decision
trategy. In contrast, increased noise could be driven by frequent
hifts between qualitatively different decision strategies. For
xample, within the initial block of 100 trials, participants
ay begin by using a highly suboptimal conjunction strategy

e.g., length intercept = 50 pixels, orientation intercept = 80◦).
fter several trials, they may switch to quite a different sub-
ptimal strategy (e.g., length intercept = 250 pixels, orientation
ntercept = 20◦), eventually settling on the optimal strategy
length intercept = 150 pixels, orientation intercept = 54◦). Such
witches in decision strategy would predict that error rates
ould be distributed more uniformly in the length–orientation

pace.
Investigation of the distribution of errors in the stimulus space

rovides some insight into this question. The accuracy rate for
ach stimulus across blocks is plotted for the basal ganglia and
ontrol groups in Fig. 5. The grayscale of each stimulus repre-
ents the proportion of correct responses (across participants)
ith darker shades of gray indicating more errors. The distri-
ution of errors was quite broad for both groups on block 1,
lthough the control data already indicate that the highest error
ates are for stimuli near the category boundary. By the end of
raining, the distribution of errors in the two groups was indis-
inguishable with stimuli with the highest error rates being near
he category boundary, suggesting refinement in the estimates
f the decision criteria.

Although the inspection of Fig. 5 data supports the hypoth-
sis that the increased criterial noise in the patient group was
riven by large, frequent shifts in decision strategy, a quantita-
ive analysis would be more compelling. Towards this goal, the
orrelation between the proportion of correct responses and the

istance to the optimal decision strategy was computed across
timuli. If the increased noise represented increased variabil-
ty in the application of near-optimal decision strategies, then

5 A similar pattern of results was observed when analyzing the criterial
oise estimates from the best-fitting rule-based model. Specifically, a significant
lock × group interaction [F(4, 56) = 6.76, p = .001, MSE = .15, η2

p = .33] driven
y a marginally significant difference during block 2 (p = .07) and a significant
ifference during block 3 (p = .001).

c
T
a
w
b
I
b

olors indicate stimuli with a lower probability of correct classification. The
ashed lines are the optimal decision boundaries. BG: basal ganglia patients;
O: control participants.

his correlation should be large and positive. On the other hand,
f the distribution of error data is driven by frequent shifts
etween qualitatively different decision strategies, as we have
rgued, this correlation should be close to zero. Indeed, this
s what was observed for the basal ganglia patients in block

(r = .11, p = .29). By block 5, the correlation was significant,
onsistent with what would be expected if a near-optimal strat-
gy was being employed, but with some inconsistency (r = .54,
= .0001). The controls also showed an increase in the correla-

ion over blocks, although the correlation was already reliable
n the first block (block 1: r = .39, p = 0001; block 5: r = .56,
= 0).6

The above analysis suggests that the basal ganglia patients
ook longer than the control participants to stabilize their
ecision bounds. A different form of a decision-based subop-
imality arises if participants prefer some category responses
ver others; that is, if there is are systematic biases even though
he appropriate strategy is adopted. A fairly simple method to
ddress the question of response bias is to compare the relative
ategory response frequencies across the two groups (Maddox
t al., 2005). A response bias statistic was computed by
ubtracting the number of responses given to the least preferred
ategory from the number given to the most preferred category.
his difference score was computed for each participant sep-
rately and the group averages are presented in Table 5. There
as little difference between groups, suggesting that a response
ias was not driving the impairment during blocks 1 and 2.

n fact, the only substantial group difference occurred during
lock 4.

6 We are indebted to an anonymous reviewer for suggesting this analysis.
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Table 5
Relative response frequencies in the rule-based task

Block Mean S.E.M.

Basal ganglia patients
1 15.1 2.5
2 13.9 1.8
3 14.7 2.0
4 14.3 2.7
5 13.0 1.8

Control participants
1 13.1 1.6
2 12.9 1.8
3 12.6 1.5
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4 9.9 1.6
5 11.1 2.0

. General discussion

Considerable evidence implicates the basal ganglia in cat-
gory learning (Ashby, Noble et al., 2003; Filoteo, Maddox,
almon et al., 2005; Knowlton et al., 1996; Poldrack et al., 2001;
rice, 2005; Seger & Cincotta, in press). Previous patient work,
owever, has relied on individuals with degenerative disorders of
he basal ganglia such as Parkinson’s and Huntington’s disease.
he present paper complements this work by testing the cate-
ory learning ability of a group of patients with focal lesions of
he basal ganglia. The results show that these individuals do not

anifest a generic deficit in all category learning tasks. Instead,
he basal ganglia patients were selectively impaired on the rule-
ased task and only during the first few hundred trials.

The model-based analyses reveal that the deficit in the rule-
ased task was not due to the use of qualitatively different
ecision strategies (i.e., information-integration strategies) in
he basal ganglia and control groups. Instead, the patients were
uboptimal in their use of rule-based decision strategies. Specif-
cally, patients were more likely to make large shifts in their
ecision criteria during the initial phase of learning. Later in
raining, however, the patients were able to reach levels of per-
ormance comparable to the control participants by becoming
ore consistent in their use of rule-based strategies.

.1. Selective impairment in rule-based category learning

The bulk of previous research investigating the role of the
asal ganglia in rule-based category learning has relied upon
asks where only a single dimension is relevant and participants

ust discover the relevant dimension while ignoring irrelevant
imensions in order to maximize accuracy. These types of rule-
ased tasks are difficult to compare with information-integration
asks given that, by definition, such tasks require the integration
f information from multiple dimensions. Accordingly, we opted
o use rule-based and information-integration tasks that required
ttending to two dimensions. We also selected tasks that were

quated on task difficulty, optimal accuracy, and the statistical
roperties of the categories (i.e., within- and between-category
iscriminability). Thus, the selective impairment on the rule-
ased task cannot be attributed to methodological differences.

t
A
l
I

ia 44 (2006) 1737–1751 1747

This finding may appear at odds, however, with related
esearch demonstrating no impairment among Parkinson’s
atients in a multi-dimensional rule-based task (Filoteo,
addox, Ing, & Song, 2005; Maddox & Filoteo, 2001).
lthough it is possible that this discrepancy represents a dif-

erence in the nature of the pathology (i.e., dopamine depletion
n the basal ganglia and/or frontal regions versus lesions of the
asal ganglia), a number of methodological differences make
uch a conclusion premature. For example, the rule-based task
f Maddox and Filoteo (2001) required participants to directly
ompare two stimulus dimensions measured in the same units
i.e., line length) which may have resulted in the optimal deci-
ion strategy being conceptualized as a unidimensional strategy
efined on the psychological dimension of relative line length.
n contrast, the present task required participants to attend to two
eparable stimulus dimensions (i.e., line length and orientation).

The results of previous work investigating the ability of
atients with degenerative disorders of the basal ganglia to learn
nformation-integration tasks have been mixed (Ashby, Noble
t al., 2003; Filoteo et al., 2001, Filoteo, Maddox, Salmon et al.,
005; Price, 2005). This inconsistency would seem to stem from
he complexity of the optimal decision strategy, with patients
eing impaired when the decision strategy is sufficiently com-
lex (Filoteo, Maddox, Salmon et al., 2005; Price, 2005). Strat-
gy complexity has been a notoriously difficult concept to define
nd operationalize, and it may be that the patients in the present
nformation-integration task were not impaired because the opti-

al strategy was not sufficiently complex. We acknowledge that
iven the small sample size it is difficult to draw strong conclu-
ions based upon a null effect in the information-integration task.
owever, it is also difficult to imagine that a realistic increase

n sample size would result in impairment in the basal ganglia
roup given the almost nonexistent effect observed in the present
ata.

Other types of information-integration tasks have yielded
nconsistent results with respect to the role of the basal ganglia
n category learning. For instance, patients with basal ganglia
ysfunction have been found to be impaired on the weather
rediction task (e.g., Keri et al., 2002; Knowlton et al., 1996;
hohamy et al., 2004; Witt et al., 2002), a task in which proba-
ilistic cue-outcome relationships must be integrated for optimal
erformance (Knowlton et al., 1994). Other studies using the
eather prediction task, however, have failed to observe any
eficits in similar patient groups (Moody, Bookheimer, Vanek,

Knowlton, 2004; Price, 2005; Sage et al., 2003). It has been
rgued that this variability, at least for patients with Parkin-
on’s disease, may be attributed to differences in disease severity
Moody et al., 2004) or, more specifically, the severity of exec-
tive dysfunction (Price, 2005).

.2. Multiple systems in category learning

It is important to interpret these data within the broader con-

ext of biologically-plausible models of category learning (e.g.,
shby et al., 1998; Frank, 2005). The present data are particu-

arly relevant to the COVIS (COmpetition between Verbal and
mplicit Systems) model of category learning (Ashby et al.,
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998). COVIS hypothesizes that category learning is a com-
etition between an explicit, hypothesis-testing system and an
mplicit, procedural-based system. The hypothesis-testing sys-
em is thought to dominate learning in rule-based tasks whereas
he procedural-based system is thought to dominate learning in
nformation-integration tasks.

The two systems operate in parallel and compete for con-
rol of the observable categorization response, although this
ompetition is biased in favor of the hypothesis-testing sys-
em. Therefore, a reasonable prediction would be that damage
o the hypothesis-testing system (as indexed by impairment on

rule-based task) would result in an increase in the use of
nformation-integration strategies. In fact, such a trend, although
on-significant, was observed in the information-integration
ask. The fact that this pattern was not observed in the rule-based
ask is not surprising given that the procedural-based system is
apable of learning rule-based tasks (Ashby et al., 1998). Thus,
erhaps the procedural-based system was driving successful per-
ormance late in the rule-based task. Alternatively, it may be
he case that the hypothesis-testing system was impaired, but
his impairment was not severe enough for the procedural-based
ystem to dominate responding in the rule-based task. Consis-
ent with this assumption, previous efforts to disrupt learning
n the hypothesis-testing system by increasing working memory
oad have resulted in a decrease in the relative dominance of the
ypothesis-testing system rather than a shift in dominance to the
rocedural-based system (Ashby & Ell, 2002).

According to COVIS, learning in rule-based tasks requires
he maintenance of decision strategies in working memory, the
election of novel rules, and the ability to switch attention among
ompeting rules (Ashby et al., 1998). In theory, lesions of the
utamen may have interfered with any of these sub-processes.
he increased criterial noise that was observed for the patients
uggests, however, that the impairment in the rule-based task
as driven by impaired maintenance or an increased propen-

ity to switch attention from one rule to another. Although such
conclusion is speculative it is consistent with the hypoth-

sized role of the basal ganglia in rule-based processing in
variety of other domains: e.g., working memory (Ashby,

ll, Valentin, & Casale, 2005; Lawrence, Watkins, Sahakian,
odges, & Robbins, 2000), executive functioning (Cools, 2006;
rone, Wendelken, Donohue, & Bunge, in press; Owen et al.,
993), and language use (Longworth, Keenan, Barker, Marslen-
ilson, & Tyler, 2005; Teichmann et al., 2005; Ullman, 2004).
In COVIS, the hypothesis-testing and procedural-based sys-

ems are assumed to depend upon separate, yet partially overlap-
ing, neural networks (see Ashby et al., 1998 for a review). Of
articular relevance to the present study, the model posits that,
ithin the basal ganglia, the head of the caudate nucleus is part
f the hypothesis-testing system. This assumption is consistent
ith the results from a number of studies (e.g., Filoteo, Maddox,
immons et al., 2005; Hikosaka, Sakamoto, & Sadanari, 1989;
ao et al., 1997; Seger & Cincotta, in press). The present finding
howing that lesions of the putamen selectively impair learning
n rule-based tasks would appear to be odds with this aspect of
OVIS. The critical test, however, would require patients with

esions encompassing the caudate. Moreover, Ashby et al. (1998)

d
d
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cknowledge that ventral-posterior portions of the putamen may
lso be involved in category learning and, furthermore, that the
utamen may be involved in resolving competition between the
ypothesis-testing and procedural-based systems.

A variety of data support a role for the putamen in rule-based
asks. For example, the firing rate of cells in the putamen predicts
ategory membership in a rule-based categorization task using
actile stimuli (Merchant, Zainos, Hernandez, Salinas, & Romo,
997). Putamen activity has also been correlated with feedback
rocessing in rule-based tasks (Monchi, Petrides, Petre, Worsley,

Dagher, 2001; Seger & Cincotta, in press), perhaps reflecting
he switching of attention among competing rules. In addition,
he reduction in neostriatal (caudate and putamen) dopamine
evels in patients with Parkinson’s disease has been shown to
esult in impaired learning in rule-based tasks (Ashby, Noble et
l., 2003; Brown & Marsden, 1988; Maddox et al., 2005).

The exact role of the putamen in rule-based tasks is unclear.
ne possibility is that the putamen may be affecting process-

ng within the caudate nucleus via striatal cell bridges (Martin,
996) or other local networks within the basal ganglia (e.g.,
triato-nigral-striatal projections) (Haber, 2003). The putamen
lso receives input from prefrontal cortical structures thought
o be important in rule-based category learning (Selemon &
oldman-Rakic, 1985, 1988). As might be expected if the

mpairment in the rule-based task were related to disruption
f processing in prefrontal regions, the patients demonstrated
eficits in some of the neuropsychological tests designed to
ssess working memory and executive functioning. There was
lso a sizeable, but non-significant correlation between working
emory measures and accuracy during the blocks in which the

asal ganglia patients were impaired. This argument, however,
s indirect and limited by the small sample size. Future work
s needed in patients with prefrontal damage to more directly
ddress this issue.

It is important to keep in mind that for all of the patients, the
esions were restricted to one hemisphere. We cannot rule out
he possibility that unilateral basal ganglia damage produced

subtle deficit in the information-integration task that would
e revealed following bilateral damage. Furthermore, because
nly one of the patients had damage in the right hemisphere,
symmetrical functions of the left and right basal ganglia in
ule-based and information-integration tasks remains unclear.
ur understanding of the functional contribution to category

earning of the various basal ganglia nuclei of both hemispheres
ould, of course, benefit from testing with a wider range of
atient groups. The current data represent an important initial
tep in relating the structure of the basal ganglia to function.

.3. Conclusions

Patients with lesions of the putamen were selectively
mpaired on a rule-based categorization task during the first few
undred trials. The impairment was driven by an increased ten-

ency for the patients to make large, suboptimal shifts in their
ecision strategy. It is important to note that these data do not
irectly address the involvement of other neural structures in cat-
gory learning (i.e., prefrontal cortex, caudate nucleus, medial
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emporal lobes). Instead, these data argue for a greater consider-
tion of the putamen in theories of rule-based category learning
e.g., the hypothesis-testing system of COVIS) and cognitive
unctioning in general.
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ppendix A

This appendix briefly describes the decision bound models.
or more details, see Ashby (1992a) or Maddox and Ashby
1993). The classification of these models as either rule-based or
nformation-integration models is designed to reflect current the-
ries of how these strategies are learned (e.g., Ashby et al., 1998)
nd has received considerable empirical support (see Ashby &
addox, 2005; Maddox & Ashby, 2004 for reviews).

.1. Rule-based models

.1.1. Unidimensional models
This model assumes that the length × orientation space is par-

itioned into four regions by setting three criteria on length or
rientation. Two versions of the unidimensional model were fit
o these data: one assumed that participants attended selectively
o length and the other assumed participants attended selec-
ively to orientation. The unidimensional models have four free
arameters: three decision criteria on the relevant perceptual
imension and the variance of internal (perceptual and criterial)
oise (σ2).

.1.2. Conjunction models
A more appropriate rule-based strategy given the current

timulus configuration is a conjunction rule involving separate
ecisions about the stimulus value on the two dimensions with
he response assignment based on the outcome of these two deci-
ions. All conjunction models assume the participant partitions
he length × orientation space into four regions in a manner con-
istent with the optimal decision strategy (see Fig. 1).

Based upon inspection of the data from the individual partic-
pants, four different conjunction models varying in flexibility

ere investigated. The optimal rule-based model assumes that

he participant uses the optimal decision criteria and has one
ree parameter (σ2). The remaining conjunction models were
eneralizations of the optimal model and assumed that either

f
p
l
W

ia 44 (2006) 1737–1751 1749

he length criterion, the orientation criterion, or both criteria
ere free to vary.

.1.3. Conjunction+ models
This class of models is similar to the conjunction models with

he exception that they assume two criteria on either the length or
rientation dimensions. The first model assumes that the length
imension is partitioned into three regions and that an orientation
riterion is used for stimuli intermediate in length resulting in
he following rule: Respond 1 if the line is short; Respond 4 if
he line is long; Respond 3 if the line is intermediate in length
nd shallow; Respond 2 if the line is intermediate in length and
teep. A similar model assumes that the orientation dimension is
artitioned into three regions and that a length criterion is used
or stimuli intermediate in orientation (i.e., a 90◦ rotation of the
rst model) resulting in the following rule: Respond 1 if the line

s intermediate in orientation and short; Respond 4 if the line is
hallow; Respond 3 if the line is intermediate in orientation and
ong; Respond 2 if the line is steep. The models have four free
arameters (two criteria on length/orientation, one criterion on
rientation/length, and σ2). Two additional models were simply
eneralizations where it was assumed that the two length or two
rientation criteria were free to vary.

The final model assumes that the length dimension is parti-
ioned into three regions and that an orientation criterion is used
nly for relatively long stimuli. This model assumes the par-
icipant uses the following rule: Respond 1 if the line is short,
espond 2 if the line is intermediate in length, Respond 3 if the

ine is long and steep, Respond 4 if the line is long and shallow.
his model has four free parameters (two criteria on length, one
riterion on orientation, and σ2).

.2. Information-integration models

.2.1. The General Linear Classifier (GLC)
This model assumes that two linear decision bounds parti-

ion the length × orientation space into four regions. The GLC
iffers from the conjunction models in that the decision bounds
re not constrained to be orthogonal to the axes of the phys-
cal dimensions – i.e., the GLC does not assume decisional
elective attention (Ashby & Townsend, 1986). This produces
n information-integration decision strategy because it requires
inear integration of perceived length and orientation. The GLC
as five parameters (the slope and intercept of the two linear
ounds and a common noise parameter, σ2). In the information-
ntegration task, a special case of the GLC assumes participants
se the linear bound that maximizes accuracy (i.e., the diagonal
ounds shown in Fig. 1). This optimal model has only one free
arameter (σ2).

.2.2. The Minimum Distance Classifier (MDC)
This model assumes that the participant constructs four deci-

ion bounds to partition the length × orientation space into

our response regions. An equivalent, and computationally sim-
le, approach is to assume that there are four units in the
ength–orientation space (Ashby & Waldron, 1999; Ashby,

aldron, Lee, & Berkman, 2001; Maddox, Filoteo et al., 2004).
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n each trial, the participant determines which unit is closest
o the perceived stimulus and produces the associated response.
ecause the location of one of the units can be fixed, and because
uniform expansion or contraction of the space will not affect

he location of the minimum-distance decision bounds, the MDC
as six free parameters (five determining the location of the units
nd σ2).

.3. Model fitting

The model parameters were estimated using maximum like-
ihood (Ashby, 1992b; Wickens, 1982) and the goodness-of-fit
tatistic was

IC = r ln N − 2 ln L,

here N is the sample size, r the number of free parameters,
nd L is the likelihood of the model given the data (Schwarz,
978). The BIC statistic penalizes a model for poor fit and for
xtra free parameters. To find the best model among a set of
ompetitors, one simply computes a BIC value for each model,
nd then chooses the model with the smallest BIC.

eferences

lfonso-Reese, L. A. (1997). On the dangers of ignoring noise in high-level
perception experiments. Unpublished Manuscript: Indiana University.

paricio, P., Diedrichsen, J., & Ivry, R. B. (2005). Effects of focal basal
ganglia lesions on timing and force control. Brain and Cognition, 58,
62–74.

shby, F. G. (1992a). Multidimensional models of categorization. In F. G.
Ashby (Ed.), Multidimensional models of perception and cognition. Hills-
dale, NJ: Erlbaum.

shby, F. G. (1992b). Multivariate probability distributions. In F. G. Ashby
(Ed.), Multidimensional models of perception and cognition (pp. 1–34).
Hillsdale: Lawrence Erlbaum Associates Inc.

shby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998).
A neuropsychological theory of multiple systems in category learning.
Psychological Review, 105, 442–481.

shby, F. G., & Ell, S. W. (2001). The neurobiology of human category
learning. Trends in Cognitive Science, 5(5), 204–210.

shby, F. G., & Ell, S. W. (2002). Single versus multiple systems of category
learning: Reply to Nosofsky and Kruschke (2002). Psychonomic Bulletin
& Review, 9, 175–180.

shby, F. G., Ell, S. W., Valentin, V. V., & Casale, M. B. (2005). FROST: A
distributed neurocomputational model of working memory maintenance.
Journal of Cognitive Neuroscience, 17, 1728–1743.

shby, F. G., Ell, S. W., & Waldron, E. M. (2003). Procedural learning in
perceptual categorization. Memory & Cognition, 31, 1114–1125.

shby, F. G., & Gott, R. E. (1988). Decision rules in the perception and
categorization of multidimensional stimuli. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 14, 33–53.

shby, F. G., & Lee, W. W. (1993). Perceptual variability as a fundamen-
tal axiom of perceptual science. In S. C. Masin (Ed.), Foundations of
perceptual theory (pp. 369–399). Amsterdam: Elsevier.

shby, F. G., & Maddox, W. T. (2005). Human category learning. Annual
Review of Psychology, 56, 149–178.

shby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational ver-

sus feedback training in rule-based and information-integration category
learning. Memory & Cognition, 30, 666–677.

shby, F. G., Noble, S., Filoteo, J. V., Waldron, E. M., & Ell, S. W. (2003).
Category learning deficits in Parkinson’s disease. Neuropsychology, 17,
115–124.

F

ia 44 (2006) 1737–1751

shby, F. G., & Spiering, B. J. (2004). The neurobiology of category learning.
Behavior and Cognitive Neuroscience Reviews, 3, 101–113.

shby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence.
Psychological Review, 93, 154–179.

shby, F. G., & Waldron, E. M. (1999). The nature of implicit categorization.
Psychonomic Bulletin & Review, 6, 363–378.

shby, F. G., Waldron, E. M., Lee, W. W., & Berkman, A. (2001). Subopti-
mality in human categorization and identification. Journal of Experimental
Psychology: General, 130, 77–96.

eck, A. T., Steer, R., & Brown, G. (1996). Beck depression inventory –
second edition manual. San Antonio, TX: Psychological Corporation.

rainard, D. H. (1997). Psychophysics software for use with MATLAB. Spa-
tial Vision, 10, 433–436.

rett, M., Leff, A. P., Rorden, C., & Ashburner, J. (2001). Spatial normal-
ization of brain images with focal lesions using cost function masking.
Neuroimage, 14, 486–500.

rown, J., Bullock, D., & Grossberg, S. (1999). How the basal ganglia use
parallel excitatory and inhibitory learning pathways to selectively respond
to unexpected rewarding cues. Journal of Neuroscience, 19, 10502–10511.

rown, R. G., & Marsden, C. D. (1988). Internal versus external cures and
the control of attention in Parkinson’s disease. Brain, 111, 323–345.

unge, S. A. (2004). How we use rules to select actions: A review of evi-
dence from cognitive neuroscience. Cognitive, Affective, & Behavioral
Neuroscience, 4, 564–579.

ools, A. R., van den Bercken, J. H. L., Horstink, M. W. I., van Spaendonck,
K. P. M., & Berger, H. J. C. (1984). Cognitive and motor shifting aptitude
disorder in Parkinson’s disease. Journal of Neurology, Neurosurgery and
Psychiatry, 47, 443–453.

ools, R. (2006). Dopaminergic modulation of cognitive function: Implica-
tions for L-DOPA treatment in Parkinson’s disease. Neuroscience and
Biobehavioral Reviews, 30, 1–23.

rone, E. A., Wendelken, C., Donohue, S. E., & Bunge, S. A. (in press).
Neural evidence for dissociable components of task-switching. Cerebral
Cortex.

elis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan Executive
Functioning System. San Antonio, TX: The Psychological Corporation.

elis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1984). California
Verbal Learning Test. San Antonio: Psychological Corporation.

ownes, J. J., Roberts, A. C., Sahakian, B. J., Evenden, J. L., Morris, R. G.,
& Robbins, T. W. (1989). Impaired extra-dimensional shift performance in
medicated and unmedicated Parkinson’s disease: Evidence for a specific
attentional dysfunction. Neuropsychologia, 27, 1329–1343.

ll, S. W., & Ashby, F. G. (in press). The effects of category overlap on
information-integration and rule-based category learning. Perception and
Psychophysics.

ll, S. W., & Ivry, R. B. (2005). Patients with cerebellar degeneration are
not impaired in rule-based or information-integration category learning.
Unpublished raw data.

iloteo, J. V., Maddox, W. T., & Davis, J. D. (2001). A possible role of the
striatum in linear and nonlinear categorization rule learning: Evidence
from patients with Huntington’s disease. Behavioral Neuroscience, 115,
786–798.

iloteo, J. V., Maddox, W. T., Ing, A. D., & Song, D. D. (2005). Charac-
terizing rule-based category learning deficits in patients with Parkinson’s
disease. Submitted for publication.

iloteo, J. V., Maddox, W. T., Ing, A. D., Zizak, V., & Song, D. D. (2005).
The impact of irrelevant dimensional variation on rule-based category
learning in patients with Parkinson’s disease. Journal of the International
Neuropsychological Society, 11, 503–513.

iloteo, J. V., Maddox, W. T., Salmon, D. P., & Song, D. D. (2005).
Information-integration category learning in patients with striatal dys-
function. Neuropsychology, 19, 212–222.

iloteo, J. V., Maddox, W. T., Simmons, A. N., Ing, A. D., Cagigas, X.

E., Matthews, S., et al. (2005). Cortical and subcortical brain regions
involved in rule-based category learning. NeuroReport, 16, 111–115.

rank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A
neurocomputational account of cognitive deficits in medicated and non-
medicated Parkinsonism. Journal of Cognitive Neuroscience, 17, 51–72.



cholog

G

G

G

H

H

K

K

K

K

K

L

L

M

M

M

M

M

M

M

M

M

M

M

N

O

P

P

P

R

R

S

S

S

S

S

S

S

S

S

S

T

T

U

W

W

W

S.W. Ell et al. / Neuropsy

arner, W. R. (1974). The processing of information and structure. New
York: Wiley.

luck, M. A., Shohamy, D., & Myers, C. (2002). How do people solve the
“weather prediction” task?: Individual variability in strategies for proba-
bilistic category learning. Learning & Memory, 9, 408–418.

reen, D. M., & Swets, J. A. (1966). Signal detection theory and psy-
chophysics. New York: Wiley.

aber, S. N. (2003). The primate basal ganglia: parallel and integrative net-
works. Journal of Chemical Neuroanatomy, 26, 317–330.

ikosaka, O., Sakamoto, M., & Sadanari, U. (1989). Functional properties
of monkey caudate neurons III. Activities related to expectation of target
and reward. Journal of Neurophysiology, 61, 814–831.

emler Nelson, D. G. (1993). Processing integral dimensions: The whole
view. Journal of Experimental Psychology: Human Perception & Perfor-
mance, 19, 1105–1113.

eri, S. (2003). The cognitive neuroscience of category learning. Brain
Research Reviews, 43, 85–109.

eri, S., Beniczky, S., Voros, E., Janka, Z., Benedek, G., & Vecsei, L. (2002).
Dissociation between attentional set shifting and habit learning: A longi-
tudinal case study. Neurocase, 8, 219–225.

nowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit
learning system in humans. Science, 273, 1399–1402.

nowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classi-
fication learning in amnesia. Learning and Memory, 1, 106–120.

awrence, A. D., Watkins, L. H. A., Sahakian, B. J., Hodges, J. R., &
Robbins, T. W. (2000). Visual object and visuospatial cognition in Hunt-
ington’s disease: Implications for information processing in corticostriatal
circuits. Brain, 123, 1349–1364.

ongworth, C. E., Keenan, S. E., Barker, R. A., Marslen-Wilson, W. D., &
Tyler, L. K. (2005). The basal ganglia and rule-governed language use:
Evidence from vascular and degenerative conditions. Brain, 128, 584–596.

addox, W. T., Aparicio, P., Marchant, N. L., & Ivry, R. B. (2005). Rule-
based category learning is impaired in patients with Parkinson’s disease
but not patients with cerebellar disorders. Journal of Cognitive Neuro-
science, 17, 707–723.

addox, W. T., & Ashby, F. G. (1993). Comparing decision bound and exem-
plar models of categorization. Perception & Psychophysics, 53, 49–70.

addox, W. T., & Ashby, F. G. (2004). Dissociating explicit and procedural-
learning based systems of perceptual category learning. Behavioral Pro-
cesses, 66, 309–332.

addox, W. T., Ashby, F. G., & Bohil, C. J. (2003). Delayed feedback
effects on rule-based and information-integration category learning. Jour-
nal of Experimental Psychology: Learning, Memory, and Cognition, 29,
650–662.

addox, W. T., Bohil, C. J., & Ing, A. D. (2004). Evidence for a procedu-
ral learning-based system in perceptual category learning. Psychonomic
Bulletin & Review, 11, 945–952.

addox, W. T., & Filoteo, J. V. (2001). Striatal contribution to category learn-
ing: Quantitative modeling of simple linear and complex non-linear rule
learning in patients with Parkinson’s disease. Journal of the International
Neuropsychological Society, 7, 710–727.

addox, W. T., Filoteo, J. V., Hejl, K. D., & Ing, A. D. (2004). Cate-
gory number impacts rule-based but not information-integration category
learning: Further evidence for dissociable category learning systems. Jour-
nal of Experimental Psychology: Learning, Memory, and Cognition, 30,
227–235.

artin, J. H. (1996). Neuroanatomy: text and atlas (2nd ed.). Stamford, CT:
Appleton & Lange.

erchant, H., Zainos, A., Hernandez, A., Salinas, E., & Romo, R. (1997).
Functional properties of primate putamen neurons during the categoriza-
tion of tactile stimuli. Journal of Neurophysiology, 77, 1132–1154.

onchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001).
Wisconsin card sorting revised: distinct neural circuits participating in

different stages of the task identified by event-related functional mag-
netic resonance imaging. The Journal of Neuroscience, 21, 7733–7741.

oody, T. D., Bookheimer, S. Y., Vanek, Z., & Knowlton, B. J. (2004).
An implicit learning task activates medial temporal lobe in patients with
Parkinson’s disease. Behavioral Neuroscience, 118, 438–442.

W

Z

ia 44 (2006) 1737–1751 1751

omura, E. M., Maddox, W. T., Filoteo, J. V., Ing, A. D., Gitelman, D.
R., Parrish, T. B., et al. (in press). Neural correlates of rule-based and
information-integration visual category learning. Cerebral Cortex.

wen, A. M., Roberts, A. C., Hodges, J. R., Summers, B. A., Polkey, C. E.,
& Robbins, T. W. (1993). Contrasting mechanisms of impaired attentional
set-shifting in patients with frontal lobe damage or Parkinson’s disease.
Brain, 116, 1159–1175.

elli, D. G. (1997). The VideoToolbox software for visual psychophysics:
Transforming numbers into movies. Spatial Vision, 10, 437–442.

oldrack, R. A., Clark, J., Pare-Blagoev, E. J., Shohamy, D., Moyano, J. C.,
Myers, C., et al. (2001). Interactive memory systems in the human brain.
Nature, 414, 546–550.

rice, A. L. (2005). Cortico-striatal contributions to category learning: Dis-
sociating the verbal and implicit systems. Behavioral Neuroscience, 119,
1438–1447.

ao, S. M., Bobholz, J. A., Hammeke, T. A., Rosen, A. C., Woodley, S. J.,
Cunningham, J. M., et al. (1997). Functional MRI evidence for subcortical
participation in conceptual reasoning skills. Neuroreport, 27, 1987–1993.

orden, C., & Brett, M. (2000). Stereotaxic display of brain lesions.
Behavioural Neurology, 12, 191–200.

age, J. R., Anagnostaras, S. G., Mitchell, S., Bronstein, J. M., De Salles,
A., Masterman, D., et al. (2003). Analysis of probabilistic classification
learning in patients with Parkinson’s disease before and after pallidotomy
surgery. Learning & Memory, 10, 226–236.

alatas, H., & Bourne, L. E. (1974). Learning Conceptual Rules III: Processes
contributing to rule difficulty. Memory & Cognition, 2, 549–553.

chwarz, G. (1978). Estimating the dimension of a model. The Annals of
Statistics, 6(2), 461–464.

eger, C. A., & Cincotta, C. M. (2002). Striatal activity in concept learning.
Cognitive, Affective, & Behavioral Neuroscience, 2, 149–161.

eger, C. A., & Cincotta, C. M. (in press). Dynamics of frontal, striatal, and
hippocampal systems during rule learning. Cerebral Cortex.

elemon, L. D., & Goldman-Rakic, P. S. (1985). Longitudinal topography
and interdigitation of cortico-striatal projections in the rhesus monkey.
Journal of Neuroscience, 5, 776–794.

elemon, L. D., & Goldman-Rakic, P. S. (1988). Common cortical and sub-
cortical targets of the dorsolateral prefrontal and posterior parietal cortices
in the rhesus monkey: Evidence for a distributed neural network subserv-
ing spatially guided behavior. Journal of Neuroscience, 8, 4049–4068.

haw, M. L. (1982). Identifying attentional and decision-making components
in information processing. In R. S. Nickerson (Ed.), Attention and per-
formance: vol. 8, (vol. 8,. Hillsdale: Erlbaum.

hepard, R. N., Hovland, C. I., & Jenkins, H. M. (1961). Learning and
memorization of classifications. Psychological Monographs, 75, 42.

hohamy, D., Myers, C. E., Onlaor, S., & Gluck, M. A. (2004). Role of
the basal ganglia in category learning: How do patients with Parkinson’s
disease learn? Behavioral Neuroscience, 118, 676–686.

eichmann, M., Dupoux, E., Kouider, S., Brugieres, P., Boisse, M. F., Baudic,
S., et al. (2005). The role of the striatum in rule application: The model
of Huntington’s disease at early stage. Brain, 128, 1155–1167.

royer, A. K., Black, S. E., Armilio, M. L., & Moscovitch, M. (2004).
Cognitive and motor functioning in a patient with selective infarction
of the left basal ganglia: Evidence for decreased non-routine response
selection and performance. Neuropsychologia, 42, 902–911.

llman, M. T. (2004). Contributions of memory circuits to language: The
declarative/procedural model. Cognition, 92, 231–270.

aldron, E. M., & Ashby, F. G. (2001). The effects of concurrent task
interference on category learning: Evidence for multiple category learning
systems. Psychonomic Bulletin & Review, 8, 168–176.

echsler, D. (1997). WAIS-III. Administration and scoring manual. San Anto-
nio, TX: The Psychological Corporation.

ickens, T. D. (1982). Models for behavior: stochastic processes in psychol-
ogy. San Francisco: W.H. Freeman.
itt, K., Nuhsman, A., & Deuschl, G. (2002). Dissociation of habit-learning
in Parkinson’s and cerebellar disease. Journal of Cognitive Neuroscience,
14, 493–499.

eithamova, D., & Maddox, W. T. (in press). Dual task interference in per-
ceptual category learning. Memory and Cognition.


	Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks
	Method
	Participants and design
	Neuropsychological assessment
	Stimuli and stimulus generation
	Procedure

	Results and discussion
	Accuracy-based analyses
	Relationship between accuracy on categorization tasks and demographic, neuropsychological, and neuropathological variables
	Model-based analyses

	General discussion
	Selective impairment in rule-based category learning
	Multiple systems in category learning
	Conclusions

	Acknowledgements
	Appendix A
	Rule-based models
	Unidimensional models
	Conjunction models
	Conjunction+ models

	Information-integration models
	The General Linear Classifier (GLC)
	The Minimum Distance Classifier (MDC)

	Model fitting

	References


