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Single and alternating hand tapping were compared to test the hypothesis that coordination during
rhythmic movements is mediated by the control of specific time intervals. In Experiment 1, an auditory
metronome was used to indicate a set of timing patterns in which a 1-s interval was divided into 2
subintervals. Performance, measured in terms of the deviation from the target patterns and variability,
was similar under conditions in which the finger taps were made with 1 hand or altemated between the 2
hands. In Experiment 2, the modality of the metronome (auditory or visual) was found to influence the
manner in which the produced intervals deviated from the target patterns. These results challenge the
notion that bimanual coordination emerges from coupling constraints intrinsic to the 2-hand system. They
are in accord with a framework that emphasizes the control of specific time intervals to form a series of

well-defined motor events.

Bimanual coordination during sustained periodic movements
has been a major topic in the research on human motor control.
Previous work has shown that the two hands act in an interdepen-
dent way in the sense that the spatial, temporal, or intensive
characteristics of the movements on each hand are constrained
with respect to the movements on the other hand. Under the
dynamic systems approach to movement control, the coordinated
unfolding of movement trajectories has been modeled in terms of
coupled oscillators (e.g., Haken, Kelso, & Bunz 1985; Kelso, Holt,
Rubin, & Kugler, 1981; Yamanishi, Kawato, & Suzuki, 1980).
Central to this approach is the notion of stability. Stable coordi-
nation is characterized by the fact that the phase delay between the
oscillating limbs is close to a target value and that the variability
of the phase delay is small. Conversely, unstable coordination
exhibits systematic distortion with respect to the intended phase
delay as well as an increase in the variability of the observed phase
delay.

Extensive experimental work has demonstrated that the coordi-
nation between two body segments (e.g., the two hands) is stable
at slow or moderate movement frequencies when they oscillate
in-phase or antiphase. In the in-phase mode, the limbs are at the
same points of their movement cycles at the same time, whereas in
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the antiphase mode, the limbs are in opposite points of their
movement cycles at the same time. For example, simultaneous
rotations of the wrists in the transverse plane are considered
in-phase if the movements mirror each other, with both hands
moving simultaneously toward or away from the body midline.
The coordination mode is said to be antiphase when one hand is
moving toward the body midline while the other is moving away.
Likewise, tapping in synchrony with both index fingers would
involve in-phase coordination, whereas tapping in a regularly
alternating manner would involve antiphase coordination. Phase
delays that deviate from in-phase or antiphase relations typically
give rise to less stable or unstable hand coordination in repetitive
cyclic movements (e.g., Kelso, 1984; Zanone & Kelso, 1997).

From the coupled oscillator framework, the stability of coordi-
nation is taken to reveal the interactions between the component
oscillators. Thus, it emphasizes intrinsic constraints on hand co-
ordination. One impressive achievement of this approach is its
capacity to provide a compact mathematical description of the
conditions under which the stability of coordination can be main-
tained or disrupted (Haken et al., 1985). This form of modeling is
not generally constrained by the psychological or neurophysiolog-
ical processes underlying these interactions.

In place of the psychological and neural entities ... traditionally
proposed to understand coordination and control, the dynamical ap-
proach posits dynamical structures of control spread across several
(neural, metabolic, biomechanical, informational, and environmental)
levels of analysis and whose functioning is bound by dynamical
principles of self-organization. (Schmidt & Fitzpatrick, 1996, p. 199)

Nonetheless, there exist a number of questions that remain
unanswered within this framework and that have received minimal
attention. One of the most important among these questions con-
cerns the way an intended (or actual) phase delay is perceived and
controlled. Beyond the possibility that the concurrently unfolding
movement trajectories may be compared continuously with each
other, two solutions can be considered. People may check whether
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some specific anchor points on each trajectory coincide with each
other in a predetermined way. For example, intermittent cross-
referencing of the movement trajectories might assess if the two
limbs reach maximum extension or flexion at the same time during
in-phase coordination or if one limb reaches maximum extension
and the other reaches maximum flexion at the same time during
antiphase coordination. Alternatively, people may set the time
intervals that separate adjacent anchor points within or across
trajectories. Salient anchor points (such as maximum flexion or
extension) or well-determined motor events (such as finger taps)
could mark the boundaries of the successive time intervals. For
instance, antiphase coordination would involve setting the occur-
rence of a finger tap performed by one hand halfway in the time
period determined by two successive finger taps performed with
the other hand. Under this view, hand coordination would be
organized by the limbs complying with (timing) constraints ex-
trinsic to the two-hand system.

One model which makes the assumption that the temporal
distribution of serial motor acts is governed by an internal time-
keeper is the two-level timing model of Wing and Kristofferson
(1973). This model was developed to account for unimanual tasks
but was extended subsequently to synchronic bimanual tapping
and alternate tapping with both hands. For instance, during biman-
ual, in-phase tapping, the coordination of the hands would be
achieved by sending a common timing signal to both hands to
synchronize their movements (Vorberg & Hambuch, 1978, 1984,
see also Helmuth & Ivry, 1996). For antiphase tapping, hand
coordination would be achieved by directing the signals of a single
timekeeper in alternation to the right and left hand (Wing, Church,
& Gentner, 1989).

The purpose of this article is to further substantiate the notion
that the coordination between the hands may be powerfully pat-
terned through the control of specific time intervals that separate
the occurrence of well-defined motor events associated with each
hand’s trajectory. From this perspective, we want to show that the
phasing between the hands may depend, at least in part, on the
participant’s capacity to generate the required timing patterns. To
this end, we first analyze the timing requirements of the bimanual
finger-tapping task used by Yamanishi et al. (1980). Our analysis
of the Yamanishi et al. task leads us to the expectation that the
main results observed in the bimanual condition should be repro-
ducible in a single-hand tapping task involving similar timing
requirements. Next, we report experimental data that support this
contention, Finally, we discuss the implications of these results for
current models of bimanual timing and coordination.

Yamanishi et al.’s (1980) Bimanual Tapping Task
and Coupled Oscillator Models

Our focus on the Yamanishi et al. (1980) study is motivated by
historical and methodological concerns. Historically, the study
represents one of the first attempts to introduce the coupled oscil-
lator model into the field of hand coordination. Methodologically,
the study is noteworthy in that the authors used a semicontinuous
tapping task. Almost all subsequent studies conducted in the cou-
pled oscillator framework have used tasks that involve continuous
free oscillations of the limbs.

Yamanishi et al. (1980) had participants tap in synchrony with
two visual pacing signals, one for the left hand and the other for the

right hand. For each visual metronome, the period of the inter-
stimulus interval (ISI) was fixed at 1,000 ms. The main experi-
mental variable was the phase delay ¢ between the occurrence of
the left and right pacing signals. The value of ¢ was randomly
varied across trials from O to 900 ms in steps of 100 ms. When
expressed as a fraction of the metronome period, these values
correspond to phase delays ranging between 0.1 and 0.9. After 10
response cycles were completed with a given phase delay, the
visual signals were extinguished and the participants continued
tapping the same pattern for 20 additional cycles. When correctly
performed, the task involved the production of sequences of
1,000-ms within-hand intervals, with one hand leading the other
hand by a time interval defined by ¢. Results showed that this time
interval (i.e., the phase delay) was closest to the required value and
exhibited minimum variability for synchronous bimanual tapping
(¢ = 0) and for regular alternate-hand tapping (¢ = 0.5). Other
phase relationships were produced with higher variability and
often showed systematic distortions in the direction of the nearest
stable phase delay. For instance, when the target phase was 0.4
or 0.6, distortions toward the 0.5 phase value could be observed.
That is, the participants’ tapping shifted toward regular alternation
between the hands.

From these results, Yamanishi et al. (1980) modeled hand
coordination in terms of coupled oscillators. The model assumes
that two oscillators control the movements, one associated with the
movements of the left hand and one associated with the move-
ments of the right hand. According to the theory, the oscillators are
prone to mutual perturbations or interference: Bilateral interactions
between the right and left oscillator change their phase relation.
The model shows that these perturbations are minimal at ¢ values
of 0 and 0.5 and that they increase with other ¢ values, entailing
less stable coordination between the hands. Subsequent dynamic
theories of hand coordination used more sophisticated coupling
functions in describing the greater stability of hand coordination in
synchronic and alternating movements (e.g., Haken et al., 1985).
In their review of Yamanishi et al. (1980) and subsequent repli-
cations (e.g., Tuller & Kelso, 1989), Schoner and Kelso (1988)
argued that the stability of coordination as a function of relative
phase is intrinsically determined. However, the intrinsic coordina-
tion tendencies can be modulated by extrinsic constraints such as
information coming from the environment (e.g., the metronome
signals) or higher level cognitive processes (e.g., memory). Coor-
dination can be expected to be more stable when the intrinsic
tendencies and the task requirement coincide (cooperation) than
when they do not coincide (competition). Although this model and
that proposed by Yamanishi et al. (1980) differ with respect to the
processes whereby coordination may be perturbed, both share the
notion that the main characteristics of hand coordination arise from
constraints intrinsic to the two-hand collective.

Timing Control Hypothesis

Consider an alternative description of the task that emphasizes
the rhythmic patterns produced by the series of finger taps (see
Figure 1). When tapping in the in-phase mode, ¢ = 0, a simple
pattern is created of evenly paced intervals with a period of 1,000
ms. For all other phases, the response cycle produced by the
repetitive movements of one hand is subdivided by the taps of the
other hand. The simplest subdivision is achieved when ¢ = 0.5
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Figure 1. Main features of the timing requirements of the bimanual

tapping task. Metronome events are represented by vertical bars. Finger
taps are represented by black boxes (left hand; LH) and white boxes (right
hand; RH). The response cycles of both hands are either concurrent
(¢ = 0.0, with simultaneous tap onsets) or shifted by some proportion of
the period duration (¢ values of 0.5, 0.2, and 0.8 are shown). Within-hand
response cycle duration is measured between tap onsets of the same hand
(i.e., time intervals delimited by black and white boxes, respectively).
When both hands’ response cycles are shifted against each other, the taps
of the right hand (white boxes) subdivide the response cycle of the left
hand (black boxes) into equal (with ¢ = 0.5) or unequal (short-long or
long—short) subintervals. The first subinterval (gray horizontal bars) is a
measure of the actual phase delay between the hands.

because, in this case, the two subintervals are of equal duration—
500 ms. With all other phases, the subintervals are of unequal
duration. To give an example, we show in Figure 1 the inter-
response intervals (IRIs) generated across hands (see gray and
black horizontal bars) with ¢ = 0.2 or 0.8. These subdivisions
create a salient short-long or long-short timing pattern. This
analysis leads us to consider the possibility that in performing the
Yamanishi et al. (1980) task, the participants controlled the coor-
dination between the hands by complying with the timing con-
straints inherent to the production of groups of rhythmic taps. We
refer to this hypothesis as the timing control hypothesis.

The timing control hypothesis focuses on an external constraint
in the sense that the rhythmic patterns are not linked to the
two-hand collective. As such, this hypothesis would predict that
the coordination patterns observed in the bimanual tapping task of
Yamanishi et al. (1980) would also be obtained in an analogous
task performed with other pairs of effectors (e.g., two fingers of the
same hand) or, perhaps more interesting to note, when the task is
performed with a single effector. If the coordination constraints
observed during two-hand tapping are due to the representation of
the timing patterns associated with the formation of rhythmic
events, one should observe similar constraints across a range of
conditions regardless of the effectors involved.

Summers, Bell, and Bums (1989) obtained results that were
consistent with this hypothesis. These authors had participants
imitate rhythmic tone sequences in three response conditions:

alternate-hand tapping with the index fingers of both hands, tap-
ping in alternation with the index and middle fingers of the same
hand, and tapping with the index finger of a single hand. The total
cycle time was 1,200 ms with different conditions created by
varying the asynchrony between two adjacent tones to set subin-
terval ratios of 11:1, 5:1, 3:1, 2:1, 1.4:1, and 1:1. These ratios
correspond to ¢ values ranging between 0.08 and 0.50. The results
showed almost identical performance under the three response
conditions. Poorest reproduction was observed when the subinter-
vals formed high-order ratios (11:1, 5:1); these patterns were
distorted toward lower order ratios. The best reproduction of the
target rhythm was obtained with the 1:1 ratio (¢ = 0.5). Moreover,
with the 1.4:1 ratio (¢ =~ 0.42), attraction toward the 2:1 pattern
rather than to the 1:1 pattern was observed.

The above results are in line with those from numerous studies
on the dynamic organization of rhythmic groups. This literature
has consistently shown that people can precisely reproduce audi-
tory patterns composed of intervals forming low-order integer ratio
relations such as 1:1 or 2:1. Interval patterns that do not obey these
ratios—those that require more complex rhythms—are often dis-
torted (when tapped out with the same finger) such that the
produced ratio is shifted toward simpler ratios (i.e., lower level
ratios, integer ratios, or both; e.g., Essens, 1986; Essens & Povel,
1985; Fraisse, 1956, 1982; Povel, 1981). The distortion is less
pronounced when the rhythmic pattern can be mapped onto a
metrical representation (Essens & Povel, 1985; Povel, 1981). In a
metrical representation, the time intervals of the rhythmic pattern
are generated as multiples of a timing unit or base duration. The
processes actually involved may be described in terms of a clock-
counter model in which a single timekeeper provides a base
duration and in which a counter mechanism counts multiples of the
base duration in order to generate the target intervals (see Collier
& Wright, 1995). Under this hypothesis, higher order ratio inter-
vals may appear more difficult to perform than low-order ratio
intervals owing to limitations in the counting process. In contrast,
noninteger ratio intervals may prove more difficult to produce than
integer ratio intervals owing to complexities in identifying the base
timing unit. However, the use of a metrical grid for rhythm
representation is not mandatory. People can encode and reproduce
time intervals forming complex (Collier & Wright, 1995) or even
simple (Essens & Povel, 1985) ratios in a nonmetrical fashion,
eventually at the expense of less precise and less accurate
reproduction.

The timing control hypothesis posits that, when bimanual tap-
ping is not performed in a synchronized manner, controlling the
between-hand time intervals is a fundamental goal for processes
involved in controlling coordination. Thus, coordination should be
stable if the timing pattern is easy to produce such as one involving
a low-order integer ratio, whereas it should be unstable if the
timing pattern does not lend itself to such a representation. A
central prediction of the timing control hypothesis is that the
timing patterns performed during alternate-hand tapping should be
quite similar to those one would observe in an analogous single-
hand tapping task. As noted above, Summers et al. (1989) provided
initial support for this conjecture. In the first experiment reported
below, we replicate and extend this work. We adopted the proce-
dure of Yamanishi et al. (1980), using the same basic response
period (1,000 ms) and range of phase delays (from O to 0.9 by steps
of 0.1). Our focus was on a comparison between when the rhythms



254 SEMIJEN AND IVRY

were produced by tapping with the index fingers of both hands
(two-hand task) and when the rhythms were produced by tapping
with the index finger of a single hand (one-hand task).’

With phase delays different from zero (¢ > 0), the task involves
the subdivision of the response cycle into two subintervals forming
either high-order integer ratio relations (9:1, 4:1), low-order non-
integer ratio relations (2.3:1, 1.5:1), or low-order integer ratio
relations (1:1). The timing control hypothesis makes similar pre-
dictions for the two-hand and one-hand tasks concerning the
duration and variability of the subintervals, as well as the variabil-
ity of the overall cycle duration. Assuming that the subintervals are
controlled in a serial fashion, close correspondence between the
required and performed subinterval duration would only be ex-
pected with the phase delay ¢ = 0.5 because this condition
involved a low-order integer ratio relation (1:1) between the sub-
intervals.” This condition corresponds to isochronous one-hand
tapping or regular alternate-hand tapping. Note that the coupled
oscillator model also predicts the stability of this condition during
two-handed tapping. With phase delays that involve high-order
(9:1, 4:1) integer ratio relations (i.e., ¢ = 0.1, 0.2, 0.8, 0.9),
distortions toward lower order ratio relations could be expected to
occur, by means of lengthening of the shorter subinterval and
shortening of the longer subinterval (see Essens & Povel, 1985;
Fraisse, 1956). In contrast, from the coupled oscillator model, one
would predict that distortions should be consistently toward the
nearest stable coordination mode (i.e., ¢ = 0 or synchronized
tapping). As such, the prediction is that the shorter interval would
be shortened and the longer interval would be lengthened. Finally,
with noninteger (2.3:1, 1.5:1) ratio relations between the subinter-
vals (i.e.,, ¢ = 0.3, 0.4, 0.6, 0.7), distortions toward neighboring
(2:1 or 1:1) integer ratio relations are expected. Here again, the two
hypotheses make different predictions. The timing control hypoth-
esis would predict distortions toward either a 2:1 or 1:1 pattern; the
coupled oscillator model designates only the 1:1 relation (¢ = 0.5)
as a natural attractor.

Next, consider the expected variability of the subintervals. We-
ber’s law has been found to hold for both the production and
perception of time intervals (e.g., Allan, 1979, 1992; Getty, 1975;
Ivry & Hazeltine, 1995; Killeen, 1992), although violations are
frequently found for very short intervals (e.g., Peters, 1989).
Hence, the timing control hypothesis predicts that in both the
two-hand and one-hand tasks, a roughly linear relationship should
be observed between the standard deviation of the subintervals and
the mean of the subintervals. In contrast, the coupled oscillator
model for two-hand tapping predicts smaller variability for
¢ = 0.5 (antiphase tapping) than for any other phase delay greater
than zero. Moreover, the timing control hypothesis leads to an
additional prediction regarding the standard deviation of the cycle
duration (target = 1,000 ms). When the response cycle is produced
as the sum of two shorter subintervals (¢ > 0), its standard
deviation should be less than the standard deviation of the same
response cycle when produced without any subdivision (¢ = 0).
This reduction should be greatest when the subintervals are equal
in duration (¢ = 0.5; see Appendix). A reduction in the standard
deviation of the cycle duration following subdivision has been
observed in numerous studies (Deutsch, 1983; Semjen, Vorberg, &
Schulze, 1992; Walter, Corcos, & Swinnen, 1998; see also Killeen,
1992). In these studies, the subdivision always created intervals
that were integer multiples of one another. However, other factors

may add to the observed variability of the cycle duration if the
target subintervals are not related in that manner.

To this point, we have assumed that the subintervals of the
response cycle were controlled in a serial fashion (by a single
timekeeper plus a counting mechanism or by two concatenated
timekeepers). Alternatively, the timing of the cycle duration and
the timing of the first subinterval could be controlled by two
hierarchically organized timekeepers that are started in common
points in time (Vorberg & Hambuch, 1978, 1984). One test to
decide whether the time intervals in a sequence of events are
controlled on several levels (hierarchic model) or a single level
(serial model) involves the analysis of the standard deviation of the
time intervals marked off by taps that have identical position in the
successive cycles. In the present case, the comparison would bear
on response cycles measured between odd-numbered taps or even-
numbered taps. The mean cycle duration is the same no matter
what tap starts the cycle. In contrast, the standard deviation of the
cycle duration would differentiate between the alternative versions
of these timing control models. If the concatenation model holds,
the standard deviation should be the same whatever the starting
tap. If the hierarchical model holds, the standard deviation should
be less for the starting tap that coincides with the output of the
higher order timer (Vorberg & Hambuch, 1984). Note that the
hierarchical model does not predict any decrease of the cycle
standard deviation when the phase delay is different from zero
because by this model, the cycle duration does not emerge as the
sum of two shorter subintervals. In addition, the hierarchical model
is mute about possible distortions of the mean subintervals at
different required phase delays.

In summary, the first experiment was aimed at substantiating the
notion that timing control is the core aspect of hand coordination
in alternate-hand tapping. To this end, we adopted the Yamanishi
et al. (1980) tapping task and compared performance between
two-hand and one-hand tapping conditions. In previous replica-
tions of the Yamanishi et al. study, data were only obtained during
the synchronization phase with the inducing stimuli (Tuller &
Kelso, 1989) or during imitation of the rhythmic sequence in the
absence of the metronome (Summers et al., 1989). In the present
experiment, we collected and analyzed the data obtained during
both the synchronization and continuation phases.

Experiment 1

Method

Participants

Six persons (including Andras Semjen), 3 men and 3 women participated
in the experiment. All of the participants had practiced a musical instru-
ment for at least 8 years.

! The ¢ = 0 condition cannot be reproduced in single-hand tapping. This
condition was therefore replaced by regular tapping without any subdivi-
sion of the basic period.

2We do not make any strong assumption about whether the timing
control operates with a metrical representation of the rhythmic patterns
(which would involve a single timekeeper and a counter mechanism) or a
nonmetrical representation (which would involve two concatenated time-
keepers, except for ¢ = 0.5, when a single timekeeper is sufficient).
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Apparatus and Measurements

The response keys consisted of circular touch plates mounted on a
wooden support fixed to a table. The participant was seated with his or her
forearms lying on the table and the index fingers placed above the response
keys. The response keys were interfaced to a Compaq Prolinea PC. All
onsets and offsets of contact between the finger and the response key were
detected. IRIs were measured to the nearest millisecond between succes-
sive contact onsets. The computer also controlled a sound card (DREAM
XPC-16; Dream S. A., Semur, France) that produced the periodic pacing
tones. The tones were presented through a monitor speaker (Roland MA-
20; Roland Taiwan Electronic Music Corporation, Taiwan) placed approx-
imately 1 m in front of the participant above the video monitor. The taps
on the response plate were clearly audible.

Task and Design

The experiment consisted of two sessions of 1.5 hr each, separated by
1-7 days. The sessions differed in the task performed, with one session
devoted to two-hand tapping and the other to one-hand tapping. Half of the
participants started with the two-hand task, and the other half started with
the one-hand task. In both tasks, the participants were requested to tap
periodically with their index finger (or fingers) on the response key (or
keys), first in synchrony with the sounds of the metronome (synchroniza-
tion) and then without the metronome (continuation).

Two-hand task. In this task, the participant had to synchronize a
left-hand tap with a high-pitched (988 Hz) tone of the metronome and a
right-hand tap with a low-pitched (740 Hz) tone of the metronome. Tone
duration was 40 ms and the ISI between successive high-pitched tones and
successive low-pitched tones was 1,000 ms. The asynchrony (or phase
delay, ¢) between the high-pitched and low-pitched tones was varied
across trials from 0 ms to 900 ms, in steps of 100 ms. For ¢ = 0, only
low-pitched tones were presented. In this condition, the participant had to
synchronize the responses of both hands to the same metronome sound.
Before each trial, a message was displayed on the video screen, informing
the participant about the phase delay for the forthcoming trial. The trial was
initiated when the participant touched a specific response plate. The mes-
sage was then erased and the metronome tones commenced. Participants
could listen to the metronome until they were ready to respond at the
required tempo and phase delay. They were required to initiate each
response sequence with a left-hand tap synchronized to a high-pitched tone.
After 40 response cycles, the metronome was turned off and the participant
continued to tap the same pattern for another 40 cycles. Participants were
told to maintain the tapping pattern induced during synchronization
throughout the continuation phase. Four blocks of 10 correct trials were
recorded during the session. Within each block of trials, each phase delay
(from 0 to 900 ms) was presented once, in a random order.

One-hand task. In this task, the metronome delivered the same stim-
ulus patterns as in the two-hand task. That is, for each trial, high- and
low-pitched tones were presented recurrently with 1,000-ms ISI, and the
asynchrony between the high- and low-pitched tones was manipulated to
create 10 possible phase delays. Again, only the low-pitched tone was
presented for ¢ = 0. The participant’s task was to synchronize a tap with
the right index finger with each tone of the sequence during 40 response
cycles and to continue the same pattern of tapping for an additional
unpaced 40 cycles. Response sequences were to be initiated with a tap
synchronized to a high-pitched tone. All other aspects of the procedure
were the same as in the two-hand task.

On-line control of data acquisition. The tap sequences were controlled
on-line to detect extra taps (bounces), tap omissions, or incorrect assign-
ment of the taps to tones at the beginning of the series. The trial was
interrupted and immediately repeated whenever any of these events were
detected.

Data Reduction and Analysis

The mean and variance of the IRIs were calculated trial by trial, with
these measures obtained separately for the synchronization and continua-
tion phases. The first five response cycles from each phase were excluded
from the data sets. Individual scores for each phase delay condition were
calculated by averaging these statistics over trials. We describe the resulis
in terms of response cycles and subintervals (see Figure 1). Response
cycles are (a) within-hand IRIs in the two-hand task and (b) IRIs measured
between successive odd-numbered taps and successive even-numbered
taps in the one-hand task. Subintervals are (a) between-hand IRIs in the
two-hand task and (b) IRIs measured between successive taps in the
one-hand task. In the two-hand task, we arbitrarily assigned the left-hand
response cycle to serve as the reference interval. Given this, the first
subinterval (represented in Figure 1 by gray horizontal bars) occurs be-
tween a left-hand tap and the next right-hand tap. The second, comple-
mentary subinterval occurs between this right-hand tap and the next left-
hand tap. Analogously, the first subinterval in the one-hand task occurs
between an odd-numbered tap and the immediately following tap, whereas
the second subinterval occurs between an even-numbered tap and the
immediately following tap. Note that during synchronization, the begin-
ning of the first subinterval was marked off by the high-pitched tone and
the beginning of the second subinterval was marked off by the low-pitched
tone.

Results
Subintervals

Duration. The mean difference between the required and ob-
served duration of the first subinterval is given in Figure 2A. The
deviation from the required value was close to zero when the
response cycle was subdivided into equal subintervals (¢ = 0.5)
by either taps of the same hand (one-hand task) or taps of the
alternating hands (two-hand task). For all other phase delays, there
were systematic distortions. In general, the shorter of the subin-
tervals was lengthened, and the longer was shortened. One excep-
tion was for ¢ = 0.4 or 0.6. With these values, the direction of
distortions was reversed. As Figure 2A shows, the pattern was very
similar for the one-hand and two-hand task. An analysis of vari-
ance (ANOVA) was performed on the difference between ob-
served and required first subinterval duration to test the effects of
task (one hand, two hand), metronome (presence, absence; i.e.,
synchronization, continuation), and phase delay. Only phase delay
proved to have a significant effect, F(8, 40) = 66.49, p < .001. A
significant Task X Phase Delay interaction, F(8, 40) = 4.49,p <
.001, pointed to differences between one-hand and two-hand tap-
ping at extreme values of ¢ (0.1 and 0.9). When the analysis was
restricted to ¢ values between 0.2 and 0.8, the Task X Phase Delay
interaction was not reliable, £(6, 30) = 1.61. A significant Met-
ronome X Phase Delay interaction, F(8, 40) = 2.69, p < .05, was
also observed. This finding indicated differences in the magnitude
of distortion in subinterval duration during synchronization as
compared with continuation, although the basic pattern is quite
similar for the two phases.

Subinterval ratios. As a consequence of the deviations in the
duration of the subintervals, the ratio of the subintervals system-
atically departed from the target values with all ¢ values other
than 0.5. Required and observed interval ratios (long/short) are
given in Figure 2B. The observed ratios were almost identical for
the one-hand and two-hand tasks except for ¢ = 0.1 and 0.9. With
¢ values of 0.3, 0.4, 0.6, and 0.7, the distortions in subinterval
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Figure 2. Subinterval duration and subinterval ratio in Experiment 1.

Panel A: Mean difference between observed and required duration of the
first subinterval (delta subinterval), as a function of required phase delay,
in the one-hand and two-hand task during synchronization and continua-
tion. Panel B: Mean of the observed ratios between the long and short
subintervals, as a function of phase delay, in the one-hand and two-hand
task during synchronization and continuation. The required ratios appear
on the thick U-shaped line.

duration established mean interval ratios close to 2. Note that the
production of identical interval ratios here required distortions of
the short and long subintervals in the opposite directions for the
¢ = 0.3 and 0.7 conditions compared with the ¢ = 0.4 and 0.6
conditions. With ¢ values of 0.2 and 0.8, the interval ratios
scattered around 3.3 (instead of the required value of 4). Finally,
with ¢ values of 0.1 and 0.9, the mean interval ratio was close to 5
in the single-hand task and close to 6 in the two-hand task (instead
of 9).This difference was probably linked with the fact that the
short subinterval underwent greater lengthening in the single-hand
task than in the two-hand task, owing perhaps to limitations in how
quickly people can tap a single finger in succession.

In sum, the observed interval ratios had two characteristic fea-
tures in both tasks: preference for the 1:1 and 2:1 ratios and shifts
toward lower order ratios when the required ratios were high. To
provide a sense of whether these results reflect the averaging of
different distortion patterns across participants, we categorized the
individual long/short interval ratio data by assigning them to their
closest integer ratio. The distribution of the individual ratios is
shown in Table | as a function of phase delay. Note that in this
presentation, the ratios obtained with complementary ¢ values
(e.g., 0.1 and 0.9) were pooled under a common entry. The ratios
observed for synchronization and continuation were also lumped

together. Therefore, the number of observations is N = 24 for the
entries with complementary ¢ values, and N = 12 with ¢ = 0.5.
Table 1 shows considerable variability between the participants in
the range ¢ < 0.3 and ¢ > 0.7, indicating that the mean values
shown in Figure 2B are somewhat misleading. However, essen-
tially no scatter is observed for data in the range 0.3 < ¢ < 0.7.

Variability. The mean of the standard deviation and the coef-
ficient of variation of the first subinterval are given in Figure 3.
The values on the abscissa correspond to the mean observed
subintervals rather than to the target subintervals. Figure 3A shows
that standard deviation increased monotonically for IRIs ranging
between 300 and 900 ms. Correspondingly, the coefficient-of-
variation function (Figure 3B) shows a rapid initial decrease over
the shortest subintervals before stabilizing at a value just below 5%
for subinterval durations of 500 ms or more. Despite somewhat
higher coefficient-of-variation values observed for the two-hand
task in the short subinterval range, the pattern of results was
qualitatively the same across task and metronome conditions.
Linear regression of the mean standard deviation to the mean IRI
in the 500-ms to 900-ms range indicated a slightly steeper slope
and better fit for the one-hand task (slope = 0.05, > = 98%) than
for the two-hand task (slope = 0.04, r* = 84%).

Response Cycle

Duration. During synchronization, the average cycle duration
was equal to the ISI of the metronome—1,000 ms. During con-
tinuation, there were small deviations from the target cycle dura-
tion at certain phase delays (Table 2). Note that the largest over-
shoots and undershoots occurred in both tasks at the same phase
delays (0.4 and 0.6 for overshoots and 0.1 and 0.9 for undershoot).
An ANOVA performed on the individual mean cycle duration
yielded a significant effect for phase delay, F(9, 45) = 2.28, p <
.03. The effect of task (one-hand, two-hand) and the Phase De-
lay X Task Interaction were not significant (F < 1).

Variability. The average standard deviation of the cycle dura-
tion is given in Figure 4A as a function of task (one hand vs. two

Table 1
Distribution of the Individual Long:Short Interval Ratios in
Experiment 1

Interval ratio

¢ and task %1 &1 71 61 51 41 31 21 L1l

0.1 &£0.9
One hand 7 14 3
Two hand 2 9 8 3 2
02 &08
One hand 6 18
Two hand 12 12
03 & 0.7
One hand 24
Two hand 24
04 & 06
One hand 24
Two hand 24
0.5
One hand 12
Two hand 12

Note. Each observed ratio was assigned to the closest integer ratio.
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Figure 3. Subinterval variability in Experiment 1. Mean standard devia-
tion (Panel A) and mean coefficient of variation (Panel B) of the first
subinterval as a function of its mean duration in the one-hand and two-hand
task during synchronization and continuation.

hand). Without any subdivision of the response cycle (¢ = 0), the
standard deviation was less in the two-hand task than in the
one-hand task, F(1, 5) = 41.74, p < .01. This finding is consistent
with results reported by Helmuth and Ivry (1996). When the
response cycle was subdivided into equal-duration subintervals
(¢ = 0.5), the standard deviation dropped to a minimum, as
expected. Across the range of ¢ values from 0.1 to 0.5, standard
deviation generally decreased; for values ranging from 0.5 to 0.9,

Table 2

Average Cycle Duration (in Milliseconds) During Continuation
in the One-Hand and Two-Hand Task, as a Function of
Required Phase Delay, in Experiment I

Task
Phase delay One hand Two hand
0.0 1,008 1,008
0.1 986 978
0.2 1,006 999
0.3 1,005 1,013
04 1,012 1,020
0.5 989 996
0.6 1,009 1,017
0.7 1,002 995
0.8 1,006 990
0.9 984 979
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Figure 4. Standard deviation of the cycle duration in Experiment 1. Panel
A: Mean standard deviation, as a function of the required phase delay, in
the one-hand and two-hand task during synchronization and continuation.
The cycle durations measured between odd-numbered and even-numbered
taps (one-hand task) or the cycle durations for left-hand and right-hand taps
(two-hand task) were collapsed. Panel B: Mean standard deviation of the
duration of the response cycles delimited by odd-numbered and even-
numbered taps, as a function of required phase delay, during synchroniza-
tion and continuation.

standard deviation increased in a symmetric fashion. Of greatest
interest in the present study, this pattern was essentially identical
in the one-hand task and two-hand task.

The standard deviation for the response cycles marked off by
odd-numbered taps and even-numbered taps is given in Figure 4B,
averaged over the one-hand and two-hand tasks. With phase delays
between O and 0.5, the standard deviation was higher for cycles
that started from odd-numbered taps, whereas with phase delays
between 0.5 and 0.9, the standard deviation was higher for cycles
that started from even-numbered taps. The crossover occurred at
¢ = 0.5. Thus, the standard deviation was higher when the cycle
was measured across taps initiating the shorter of the two subin-
tervals. These effects were more pronounced during synchroniza-
tion than during continuation.

An ANOVA was performed on the individual standard devia-
tion scores to test the effects of task, metronome, cycle delimiter
(even-numbered taps, odd-numbered taps), and phase delay. Only
the main effect of phase delay was found to be significant, F(8,
40) = 16.23, p < .001. There was a Task X Phase Delay inter-
action, F(8, 40 ) = 2.49, p < .05, due to the fact that at the extreme
values of ¢ (0.1 and 0.9), the standard deviation in the one-hand
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task was higher than in the two-hand task, whereas at all other ¢
values, the one-hand task provided slightly smaller standard-
deviation values. In a second ANOVA restricted to ¢ values
between 0.2 and 0.8, this interaction proved to be statistically
nonsignificant. No other interactions involving the one-hand ver-
sus two-hand contrasts were significant. The significant three-way
interaction between cycle delimiter, phase delay, and metronome
conditions, F(8, 40) = 13.22, p < .001, indicated that the standard-
deviation differences linked with cycle delimiter were essentially
confined to the synchronization phase.

Discussion

The results of this experiment support the hypothesis that timing
control is the core aspect of hand coordination in periodic
alternate-hand tapping. On the basis of the timing control hypoth-
esis, we anticipated that the results for the one- and two-hand tasks
would be similar on a set of a priori criteria. These included
predictions concerning the duration of the subintervals created
within the basic tapping cycle by taps of the same hand (one-hand
task) or of the other hand (two-hand task), the variability of the
subintervals, and the variability of the cycle duration. Despite
small discrepancies observed mainly at the extreme phase values
(0.1 and 0.9), the pattern of results showed impressive concor-
dance across the one- and two-hand tasks on all three criteria.

The duration of the subintervals, and hence, the phase delay in
the two-hand task, exhibited systematic distortions in the direction
predicted by the timing control hypothesis. Higher order interval
ratios were distorted toward lower order ratios, and low-level
noninteger ratios were distorted in the direction of low-level inte-
ger ratios. As noted earlier, simple time interval ratios (1:1 and
2:1) constitute stable timing patterns in that they are reproduced
more precisely than higher order or more complex ratios. Our
results differ from those reported in Yamanishi et al. (1980) when
the target phase values were 0.4 or 0.6. In the earlier report, the
observed distortions were toward the antiphase hand coordination
mode (¢ = 0.5). This finding prompted Yamanishi et al. to
consider the antiphase mode as a stable state of coordination
toward which other, less stable modes of coordination are at-
tracted. Because antiphase coordination involves the generation of
between-hand subintervals with a ratio of 1, Yamanishi et al.’s
finding can also be accounted for in terms of shift toward a more
attractive pattern of timing. In the present study, we did not
observe an attraction toward the antiphase mode in the two-hand
task for ¢ = 0.4 or 0.6. Instead, these phase delays were distorted
toward ¢ = 0.33 or ¢ = 0.66, respectively—phase delays in which
the between-hand subintervals have a ratio of 2:1 (see also Sum-
mers et al., 1989). Because this pattern was also observed in the
one-hand task, these shifts in the between-hand phase delays can
be viewed as resulting from an attraction toward a more stable
timing pattern. Note again that these phase delays are not consid-
ered naturally attractive under the coupled oscillator modeling of
between-hand coordination.

The timing control hypothesis predicts that the standard devia-
tion of the subintervals will increase with their mean, whereas the
coupled oscillator hypothesis predicts that the variability of phase
delay will be lower for ¢ = 0.50 than for any other nonzero phase
delay. We observed the former pattern in both the two-hand and
one-hand tasks for subintervals longer than 300 ms. Moreover, the

function relating the standard deviation to the mean was approx-
imately linear in the 500-900-ms range, consistent with Weber’s
law in the temporal domain. However, there is a sharp rise in the
coefficient of variation for intervals below 300 ms. Other investi-
gators have observed a similar rise at very short tapping intervals
(e.g., Peters, 1989). This apparent breakdown of Weber’s law
might reflect the fact that for short intervals, the variability con-
tributed by duration-dependent (timekeeper) processes is relatively
small compared with that contributed by duration-independent
(motor) processes. Alternatively, the rise here might reflect insta-
bility in performance when attempting to produce temporal pat-
terns with high ratios between the subintervals.

One distinguishing feature of the timing control hypothesis is
the prediction that the variability (SD) of the cycle duration will
decrease when the response cycle is produced as the sum of two
subintervals. As expected, the greatest decrease was observed
when the subintervals were equal in duration (¢ = 0.50). Frac-
tionated production of the response cycle entailed some reduction
in the standard deviation for other phase delays as well, although
the extreme ¢ values were actually accompanied by an increase,
rather than a decrease, in the cycle standard deviation. The sum-
mation hypothesis assumes that the subintervals are controlled in a
strictly serial fashion with no interaction between successive sub-
intervals and with no drift over the extent of the trial. The high
variability for patterns requiring high subinterval ratios may indi-
cate that for these conditions, the subdivision process may intro-
duce a new source of variability. Alternatively, as noted above, this
increase may result from the fact that the participants had difficulty
in establishing a stable pattern for these conditions (see Table 1).

Some comment is in order concerning the relationship between
the cycle standard deviation and cycle delimiters. When the re-
sponse cycle was subdivided into equal subintervals, the cycle
standard deviation did not depend on how the cycles were mea-
sured (e.g., between odd-numbered or even-numbered taps). In
contrast, when the response cycle was subdivided into unequal
subintervals, the cycle standard deviation was higher when the
cycles were measured between the taps that initiated the shorter
subintervals rather than between the taps that terminated the
shorter subintervals (or, equivalently, initiated the longer subinter-
vals). This effect was reliable only during the synchronization
phase. Variations in the response cycle standard deviation as a
function of the cycle delimiter can be expected to occur under a
hierarchical model of timing in which the cycle with the lower
standard deviation is controlled by a higher order timekeeper, and
the first subinterval within this cycle is controlled by a subordinate
timekeeper (Vorberg & Hambuch, 1978, 1984). However, a timing
model of this kind would not easily predict the observed subinter-
val distortions and the decrease in the cycle standard deviation
with nonzero phase delays. Moreover, it is difficult to see why
hierarchical control would be limited to the synchronization phase.
One can suppose, as a more plausible explanation, that during the
synchronization phase, the participants corrected for the synchro-
nization error mainly by adjusting the timing of the tap that
initiated the shorter subinterval. The relatively higher standard
deviation of the response cycles measured between these taps may
be a consequence of this process because correction for synchro-
nization error is known to enhance the variability of the IRIs
(Vorberg & Wing, 1996).
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Experiment 2

The results of Experiment 1 corroborate the main predictions of
the timing control hypothesis. This hypothesis provides a different
emphasis on the processes underlying bimanual coordination dur-
ing periodic movements than the coupled oscillator model intro-
duced by Yamanishi et al. (1980). The timing control hypothesis
emphasizes extrinsic constraints involving the representation of
the temporal relationships between the subintervals. These con-
straints are relevant not only to two-handed tasks such as those
used by Yamanishi et al. but also to the one-handed task used in
Experiment 1.

What remains unclear is why the participants in the Yamanishi
et al. study (1980) were attracted toward the 1:1 timing pattern
(antiphase tapping), whereas the participants in the present study,
as well as those of Summers et al. (1989), preferred to shift toward
the 2:1 timing pattern? One methodological difference between the
studies involves the stimulus modality used to entrain perfor-
mance. Yamanishi et al. used a visual metronome. In the current
study and in that of Summers et al., the target intervals were
presented in the auditory modality. With an auditory metronome,
the participants could clearly perceive that the intertone intervals
were unequal for all phase delays different from 0.0 or 0.5. Given
this, they would know that they must produce unequal between-
hand subintervals to meet the task demands except in the ¢ = 0.5
condition. In contrast, the visual metronome may not have pro-
vided sufficiently sharp discrimination between the subintervals
when they were close in duration (e.g., with ¢ = 0.4 or 0.6), a
hypothesis supported by the time perception literature indicating
poorer temporal acuity in vision than audition (see review in Allan,
1979). Thus, the attraction toward the antiphase coordination mode
in these conditions may have matched the participants’ perception
of the temporal pattern. We tested this hypothesis in Experiment 2.

Method
Participants

Six female participants volunteered in the experiment. Only one of them
had played a musical instrument for more than S years.

Task

The experiment consisted of two sessions of 1.5 hr each, separated by
1-7 days. Both sessions involved two-hand tapping. The sessions differed
in the modality used to establish the target phase. In the first session, visual
stimuli were used for the pacing metronome. In the second session,
auditory stimuli were used for the metronome. A fixed order of these
conditions was adopted because we were concerned that the participants
might develop a rhythmic response pattern in the auditory condition and
maintain this strategy during the visual condition. In particular, they might
discover that an alternating strategy was only viable on a small percentage
of the trials. Note that our main interest in Experiment 2 was whether the
1:1 pattern was more likely to occur when performance was guided by a
visual metronome. Thus, the main data of interest were collected prior to
any possible contamination from the auditory condition.

The task and procedure in the auditory session were identical to those
used in the two-hand task of Experiment 1. For the visual session, the
stimulus display consisted of three light-emitting diodes (LEDs): a central
fixation LED and two lateralized LEDs positioned 5° of visual angle to the
right or left of the fixation marker. Participants were told to synchronize a
left-hand tap with the left-side LED and a right-hand tap with the right-side

LED. Each LED was periodically illuminated for 20 ms. The ISI between
successive illuminations of each LED—that is, the cycle duration—
was 1,000 ms. As in Experiment 1, the asynchrony between both LEDs was
varied across trials from 0 ms to 900 ms in steps of 100 ms. For ¢ = 0, both
LEDs were illuminated simultaneously, and the participants had to syn-
chronize the responses of both hands to the LEDs. For ¢ > 0, the
participants were required to initiate each response sequence with a left-
hand tap synchronized to a left-side stimulus. Before each trial, a message
was displayed on the video screen indicating whether the LEDs would
blink simultaneously or in succession during the forthcoming trial. Partic-
ipants could observe the metronome signals until they were ready to
respond at the required tempo and phase delay. All other aspects of the
trials were the same as in Experiment 1.

Results
Subintervals

Subinterval duration. The mean difference between the re-
quired and observed duration of the first subinterval is given in
Figure 5A. The subintervals were closest to the required value in
both tasks with ¢ = 0.5. In general, the short subinterval (¢ < 0.4)
tended to be lengthened and the long subinterval (¢ > 0.6) tended
to be shortened. These effects were slightly stronger in the visual
task. Of greatest interest in this experiment, the visual and auditory
tasks led to opposite distortions with ¢ values of 0.4 or 0.6. In the
visual task, the participants tended to produce equal subintervals
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Figure 5. Subinterval duration and subinterval ratio in Experiment 2. Panel
A: Mean difference between observed and required duration of the first
subinterval (delta subinterval), as a function of required phase delay, in the
visual and auditory task during synchronization and continuation. Panel B:
Mean of the observed ratios between the long and short subintervals, as a
function of phase delay in the visual and auditory task, during synchronization
and continuation. The required ratios appear on the thick U-shaped line.
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for these conditions, similar to those reported by Yamanishi et al.
(1980). Thus, with ¢ = 0.4, the first subinterval was longer than
required, and with ¢ = 0.6, it was shorter. The reverse trend was
found in the auditory task. Here, with ¢ = 0.4, the first subinterval
was shorter than required, and with ¢ = 0.6, it was longer. The
results for the auditory condition replicate those observed in
Experiment 1.

The difference scores were subjected to an ANOVA that tested
the effects of task, metronome, and phase delay. Only phase delay
had a significant effect, F(8, 40) = 23.27, p < .001. A significant
Task X Phase Delay interaction, F(8, 40) = 8.01, p < .001,
confirmed the contrasting profile of subinterval distortions for the
visual and auditory tasks. Given our predictions regarding the
difference between the two modalities, a separate test was per-
formed on the interaction between task (visual vs. auditory) and a
restricted set of phase delays (0.4, 0.5, and 0.6). This interaction
was also significant, F(2, 10) = 11.51, p < .01. The Metronome X
Phase Delay interaction, F(8, 40) = 6.12, p < .001, was also
significant, owing to the fact that the subintervals were more
distorted during continuation at the extreme phase delays.

Subinterval ratios. Required and observed subinterval ratios
(long/short) are given in Figure 5B. Table 3 presents the distribu-
tion of the ratios from individual trials into the nine integer
categories, with the values calculated across the synchronization
and continuation phases as in Experiment 1. The ratio data provide
further confirmation of the modality effect for ¢ values of 0.4
and 0.6. The mean value for the visual task is closer to a ratio of 1,
consistent with the hypothesis that the participants perceived the
two subintervals as equal in duration. Indeed, as Table 3 shows,
most trials were assigned to the 1:1 category. In contrast, in the
auditory task, all of the interval ratios were assigned to the 2:1
category, and the mean subinterval ratio was 1.96.

For the other values of ¢, the subinterval ratio results were
similar to those observed in Experiment 1. The 1:1 ratio (¢ = 0.5)
was precisely reproduced in both tasks, and high-level ratios
tended to be replaced by lower level ratios. A modality effect is

Table 3
Distribution of the Individual Long:Short Interval Ratios in
Experiment 2

Interval ratio

¢andtask 91 81 7.1 61 51 41 31 21 1:1

0.1&09
Visual 2 3 10 8 1
Auditory 3 5 7 7 2
02&08
Visual 2 13 9
Auditory 6 18
03&0.7
Visual 2 6 16
Auditory 21
04 & 0.6
Visual 7 17
Auditory 24
0.5
Visual 12
Auditory 12

w

Note. Each observed ratio was assigned to the closest integer ratio.

also evident at the extreme phase delays, and the compression
effect for the auditory condition appears to be more pronounced
than in Experiment 1.

Subinterval variability. The mean of the standard deviation
and the coefficient of variation of the first subinterval are pre-
sented in Figure 6. The abscissa values are based on the observed
subinterval durations rather than the target durations. The standard
deviation was greater in the visual task than in the auditory task,
F(1, 5) = 16.43, p < .01. It is interesting to note that this effect
appears to extend into the continuation phase, although the audi-
tory advantage is greatly attenuated during this phase. The rela-
tionship between the standard deviation and the mean interval
during synchronization with the visual metronome was more ir-
regular. The increase in the standard deviation at ¢ values of 0.4
and 0.6 is reminiscent of the standard-deviation data reported in
Yamanishi et al.’s (1980) study. Linear regression of the mean
standard deviation to the mean IRI in the 500-ms-900-ms range
for the continuation data revealed a slightly steeper slope for the
visual task (slope = 0.08, r* = 99%) than for the auditory task
(slope = 0.06, ©* = 87%), supporting the hypothesis that temporal
acuity is poorer for vision than audition.

As in Experiment 1, the coefficient of variation was highest for
the shortest subintervals and decreased to a relatively stable value
for subinterval durations of 500 ms or more. The asymptote in the
auditory task was slightly above 5%, whereas in Experiment 1, it
was slightly below this value. This difference is most probably
related to the fact that all the participants of the first experiment
were musically trained, whereas those of the second experiment
were not.

Response cycle

Duration. During synchronization, the average cycle duration
was equal to the ISI of 1,000 ms. During continuation, the partic-
ipants consistently undershot the target duration at the two shortest
and two longest phase delays, with this deviation greater in the
visual task (Table 4). Overshoots occurred only in the auditory task
at phase delays of 0.3, 0.4, 0.6, and 0.7. An ANOVA performed on
the individual mean cycle duration yielded a significant effect only
for phase delay, F(9, 45) = 7.59, p < .001.

Variability. The average standard deviation of the cycle dura-
tion is given in Figure 7A as a function of task (visual vs.
auditory). In both tasks and during both synchronization and
continuation, the standard deviation tended to decrease for ¢
values ranging between 0.1 and 0.5 and to increase for ¢ values
ranging between 0.5 and 0.9. This pattern reproduces that observed
in Experiment 1. Thus, the standard deviation dropped to a mini-
mum in both tasks for ¢ = 0.5, that is, with regular alternating
tapping of both hands (the antiphase coordination). The standard
deviation for response cycles delimited by odd-numbered taps and
even-numbered taps is given in Figure 7B. During synchroniza-
tion, the standard deviation was higher for cycles that started from
odd-numbered taps when the phase delay was less than 0.5,
whereas the standard deviation was higher for cycles that started
from even-numbered taps when the phase delay was greater
than 0.5. The odd- and even-numbered functions cross over at
¢ = 05.

An ANOVA performed on the standard deviation scores tested
the effects of task, metronome, cycle delimiter, and phase delay



TEMPORAL REPRESENTATION IN ALTERNATE-HAND TAPPING

261

Synchronization Continuation
A
80 80 )
= visual (o] visuai (o]
13 auditory @ auditory @
c
% 60 } 60
=
S
B 40
8 -1l & I
c
S
)
0 0 N
100 300 500 700 <900 100 300 500 700 900
Subinterval duration (ms} Subintervatl duration (ms)
B
- 20 f
9 0 visual o visual [0}
= quditory @ auditory @
%ﬁ 15 15
g
5 10 107
€
2
£ 5 5
k=3
8
[¥]
ot e ot
100 300 500 700 900 100 300 500 700 900

Subintervai duration (ms) Subinterval duration (ms)

Figure 6. Subinterval variability in Experiment 2. Mean standard devia-
tion (Panel A) and mean coefficient of variation (Panel B) of the first
subinterval, as a function of its mean duration in the visual and auditory
task, during synchronization and continuation.

(0.1 to 0.9). The effects of phase delay, F(8, 40) = 9.70, p < .001,
and cycle delimiter, F(1, 5) = 7.44, p < .05, were found to be
significant. A significant Task X Metronome interaction, F(1,
5) = 49.49, p < .001, indicated that the average standard deviation
during synchronization was higher in the visual task than in the
auditory task, whereas during continuation, the standard deviation
was similar across tasks. A significant three-way interaction be-
tween metronome, cycle delimiter, and phase delay confirmed that
the effects of cycle delimiter seen during synchronization were

Table 4

Average Cycle Duration (in Milliseconds) During Continuation
in Visual and Auditory Task, as a Function of Required

Phase Delay, in Experiment 2

Task
Phase delay Visual Auditory
0.0 962 994
0.1 958 971
0.2 983 993
0.3 1,000 1,034
0.4 995 1,058
0.5 991 998
0.6 989 1,039
0.7 970 1,014
0.8 944 982
09 939 951
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Figure 7. Standard deviation of the cycle duration in Experiment 2. Panel

A: Mean standard deviation, as a function of the required phase delay, in
the visual and auditory task during synchronization and continuation. The
cycle durations measured for left-hand and right-hand taps were collapsed.
Panel B: Mean standard deviation of the duration of the response cycles
delimited by odd-numbered (left hand) and even-numbered (right hand)
taps, as a function of required phase delay, during synchronization and
continuation.

eliminated during continuation, F(4,80) = 4.68, p < .001. The
standard deviation of the cycle duration in the auditory condition
was higher in this experiment than in Experiment 1 (see Figures 4
and 7). This discrepancy points again to group differences in
musical expertise.

Discussion

In Experiment 2, either a visual or auditory metronome indi-
cated the required timing pattern for alternate-hand tapping. With
a visual metronome, we replicated the experimental arrangement
under which Yamanishi et al. (1980) and Tuller and Kelso (1989)
observed phase shifts toward the antiphase pattern (¢ = 0.5) for
required phase delays of 0.4 or 0.6. With an auditory metronome,
we replicated the experimental arrangement under which, with the
same required phase delays, phase shifts toward 0.33 and 0.66
were observed (Summers et al.,, 1989, and Experiment 1 of the
present study). The main aim of the experiment was to show that
the direction of phase shift was conditional upon the modality of
the inducing metronome. With a visual metronome, we expected a
shift toward 1:1 subinterval ratios (¢ = 0.5), presumably owing to
the fact that the participants would tend to perceive the subinter-
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vals as equal in length. In contrast, we expected that the duration
difference between the subintervals would be easily perceived in
the auditory condition, and thus the produced distortion would be
shifted to a simple ratio of 2:1.

The results are in accord with these predictions. Note, however,
that the auditory metronome induced a more consistent behavior
across participants than the visual metronome at ¢ values of 0.4
and 0.6. In the visual condition, some of the shifts occurred in the
2:1 direction rather than in the 1:1 direction. In the auditory case,
no trials were suggestive of a shift in the 1:1 direction. Yamanishi
et al. (1980) also reported large discrepancies between the partic-
ipants with respect to the direction of the distortion of the phase
delay. Although these authors did not present analyses in terms of
subinterval ratio, their graphs clearly show that at certain required
phase delays (e.g., ¢ = 0.7), some participants performed a 2:1
ratio, whereas for other participants, the produced ratio was ap-
proximately 2.7:1. From the present results, it thus appears that the
sensory modality of the entraining metronome may critically in-
fluence the selection of the attractive pattern. Therefore, the notion
that the preferred timing pattern (or coordination mode) is
uniquely determined by coupling influences intrinsic to the hand
collective must be qualified.

A systematic relationship between cycle delimiters and cycle
duration standard deviation occurred during the synchronization
phase, as in Experiment 1. This result is consistent with the
hypothesis that the difference between the two delimiters is due to
the effects of synchronization error correction, rather than to the
effects of a hierarchical form of timing control. Further study is
required to determine why error correction may occur in an asym-
metric fashion when the subintervals are unequal.

Comparisons between the visual and auditory conditions re-
vealed greater overall timing variability in the visual task. While it
is possible that this reflects a practice effect because all partici-
pants performed the visual task during the first session, we suspect
that the difference reflects an advantage for temporal processing of
auditory signals. First, the difference in timing variability (as
indexed by the standard deviation of the cycle duration and of the
subintervals) was greatest during synchronization, although it per-
sisted in attenuated form during continuation (see also, Kolers &
Brewster, 1985). A practice effect would be expected to also
remain during continuation. Second, the observed asymmetry is
consistent with previous modality effects in the literature (see
Allan, 1979).

What remains to be seen is whether the modality effect is
manifest in timing processes per se (see Penney, Gibbon, & Meck,
2000) or whether it arises from other sources of variability. Syn-
chronization requires the contribution of corrective mechanisms
that keep the motor responses locked to the metronome events. It
is often assumed that the input to the corrective mechanisms is the
time asynchrony between the occurrence of the taps and the
metronome events (Semjen, Schulze, & Vorberg, 2000; Vorberg &
Wing, 1996). The enhanced timing variability during synchroni-
zation with the visual metronome might be due to less precise
input to the corrective loop.

Despite such differences, similar patterns were obtained in the
visual and auditory conditions in terms of the relationship between
the required phase delay and cycle duration standard deviation,
including minimal standard deviation in the ¢ = 0.5 condition.
This suggests that the internal timing mechanisms had the same

functional characteristics whether they were invoked using the
visual or the auditory metronome.

General Discussion

Two contrasting views of bimanual coordination were examined
in this study. One view asserts that the main characteristics of hand
coordination in repetitive cyclic tasks arise from dynamic interac-
tions (coupling) between biological oscillators, that is, from con-
straints intrinsic to the two-hand system (e.g., Kelso et al., 1981;
Schoner & Kelso, 1988; Yamanishi et al., 1980). Studies on the
coordination of (low- or medium-frequency) bimanual movements
have consistently emphasized that two coordination patterns, in-
phase and antiphase, are intrinsically stable and behave as attractor
states (Haken et al., 1985; Kelso, 1984; Yamanishi et al., 1980).
Other forms of phasing patterns can be learned with practice,
although even here, the target phase may only be manifest at
certain points within the cycle (e.g., Zanone & Kelso, 1997).

The alternative view we propose postulates that the main con-
straints associated with the production of repetitive movements
arise from the internal representation of the temporal requirements
for the task. To reflect this emphasis, we have termed this view the
timing control hypothesis. For bimanual tapping, the temporal
representation specifies the time intervals that are produced by
successive taps across the hands, as well as the overall cycle
duration for successive taps within each hand (or other salient
events within the movement trajectory). The stability of a repeti-
tive pattern will be a function of the temporal relationship between
the subintervals. In particular, patterns that lend themselves to
simple rhythmic relationships will be more stable than those that
require complex thythms (or are arhythmic). Under the timing
control hypothesis, the emphasis is on constraints that are extrinsic
to the two-hand system. Indeed, such constraints are not limited to
bimanual coordination. As shown in Experiment 1, they are also
manifest during the production of repetitive unimanual movements
and play an important role in how we perceive periodic events. As
demonstrated in Experiment 2, the temporal organization of bi-
manual movements is intimately linked to how the participants
perceive the task (see also Klapp et al., 1985; Summers et al.,
1989).

An essential component of the timing control hypothesis is the
idea that the observed temporal pattern reflects the operation of a
central timekeeper (e.g., Wing & Kiristofferson, 1973). This pro-
cess is, at least at an abstract level, amodal in nature (Fraisse, 1963;
Ivry & Hazeltine, 1995; Ivry & Keele, 1989; Keele, Pokorny,
Corcos, & Ivry, 1985; Rosenbaum & Patashnik, 1980). Our focus
in this article has been to assess the importance of central time-
keeping rather than to characterize the nature of this process.
Nonetheless, the observed timing patterns conformed to quantita-
tive predictions derived from the hypothesis that the intervals were
controlled by a central timekeeper (or timekeepers) in a serial
fashion (Vorberg & Wing, 1996). First, a Weber-type relationship
was observed between the standard deviation of the subintervals
and their means (Ivry & Hazeltine, 1995; Killeen & Weiss, 1987),
although violations were apparent for the shortest intervals. Sec-
ond, in general, the standard deviation of the cycle duration de-
creased when this period was produced as the sum of two subin-
tervals, especially when the subintervals were equal in duration.
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Third, the distortion of the subintervals was consistently toward
simple ratios such as 2:1.

The latter result is especially important in contrasting the timing
control hypothesis with the coupled oscillator model. The coupled
oscillator view would predict a strong attraction to the antiphase
mode for target phase relations near 0.5. However, when an
auditory metronome was used to define the task, the distortions for
the 0.4 and 0.6 conditions were in a direction away from 0.5. We
assume that the participants perceived the inequality between the
subintervals and distorted the target pattern to the closest simple
rhythm.

It is important to note that the coupled oscillator model has
proven useful in accounting for aspects of coordination beyond
those observed during bimanual movements. The basic ideas have
been used to examine coordination between the upper and lower
limbs (Baldissera, Cavallari, & Civaschi, 1982; Kelso & Jeka,
1992) as well as segments of a single limb (Kelso, Buchanan, &
Wallace, 1991). The framework has also been generalized to
capture single-limb coordination. For example, the interactions
between two individuals (Schmidt, Carello, & Turvey, 1990) or
between an individual and periodic external signals (Wimmers,
Beek, & van Wieringen, 1992) have been modeled in terms of
coupled oscillators. A strength of this approach has been that a
common abstract account based on the dynamics of coupled os-
cillators can provide a description of the interactions observed
under these various conditions. We expect that the generality here
reflects, at least in part, the constraints associated with represent-
ing temporal relationships between different events, regardless of
whether the events derive from the actions of one hand or of two
hands of a single individual or from the actions produced by two
individuals.

All of the movements in our experiments were performed at a
comfortable speed. In contrast, much of the work based on the
coupled oscillator framework has focused on how patterns of
stability vary as a function of tempo. In particular, the model has
provided an elegant description of the phase transition that occurs
at a critical frequency such that antiphase movements become
unstable and participants experience an unintended transition to an
in-phase mode. Such transitions are observed across a wide range
of conditions, emphasizing the fundamental dynamic principles
captured by a coupled oscillator model. Phase transitions are not
only observed with multilimb movements but also arise between
single limb movements and external events. For example, Wim-
mers et al. (1992) observed a phase transition from antiphase to
in-phase mode when participants tracked a moving visual stimulus.
They suggested that the transition occurs “because at a particular
frequency in the antiphase mode an informational resolution ceil-
ing is reached that can be resolved by changing to the in-phase
mode” (Wimmers et al., 1992, p. 225). This view would seem
consistent with the timing control hypothesis. Coordination be-
tween the two events requires sufficient resolution of the temporal
information characterizing each component of the task.

More generally, this idea might provide an account of phase
transitions within the timing control hypothesis. Antiphase move-
ments require not only a representation of the target intervals but
also a means for resolving the asymmetric gestures for the two
hands. The information load is reduced during in-phase move-
ments given the symmetry of the gestures. At this point, we only
intend this conjecture to provide a qualitative description of how

phase transitions may reflect limitations on how information is
represented (see also, Rosenbaum, 1998).

According to the timing control view, well-defined motor events
are given special status in the control of coordination because such
events define the relevant temporal intervals (see also Summers et
al., 1989). Coordination may depend critically on the perceptual
characteristics of the available motor events. For instance, the
finger taps on a response plate might provide sharper timing cues
than do the direction reversals during smooth, continuous oscilla-
tions of the fingers, hands, or arms. Such differences might ac-
count at least in part for the fact that alternate-hand finger tapping
can be sustained up to 5 Hz (i.e., 100-ms between-hand IRI;
Pressing & Jolley-Rogers, 1997), whereas antiphase finger oscil-
lations typically undergo phase transition at around 2.5 Hz (e.g.,
Kelso, 1984). At any event, this example suggests that the timing
control of coordination is in principle not limited to slow produc-
tion rates.

Does timing control selectively operate on the portion of the
trajectory that is associated with relevant motor events, or does it
include the trajectory as a whole? Similarly, is bimanual coordi-
nation achieved by a continuous comparison process between the
two limbs or through a relatively discrete process? Although we
can not make strong claims here, our working hypothesis is that the
control processes associated with representing the temporal events
are linked to discrete events. Some light on this issue can be
gleaned from studies examining how people learn new patterns of
coordination. Zanone and Kelso (1997) were able to train partic-
ipants to produce bimanual movements with the novel phases of
¢ = 0.25 and 0.75. However, the novel phase relationships were
generally maintained only in the region of maximum flexion of the
fingers. For most of the trajectory, the phase delay was close to
¢ = 0.0 or 0.5. Studies of multifrequency coordination (e.g., one
limb oscillating at a given frequency and the other at twice that
frequency (Peper, Beek, & Daffertshofer, in press; Pressing, 1999)
have provided similar results. The overall performance generally
met the required frequency and phase relationships. At maximum
flexion or extension, the two hands coincided every other cycle.
However, the dissociation between the trajectories was less than
perfect and exhibited tendencies to move in-phase or antiphase
over sizable portions of the motion paths (Byblow & Goodman,
1994; Swinnen, Dounskaia, Walter, & Serrien, 1997, Walter,
Swinnen, Corcos, Pollatou, & Pan, 1997).

Another aspect of the Zanone and Kelso (1997) study is infor-
mative. The participants not only learned the novel phases but
exhibited spontaneous transfer of the newly learned coordination
(e.g., ¢ = 0.25) to the “symmetry partner” (e.g., ¢ = 0.75). Such
transfer is consistent with the idea that the temporal relationships
are represented at an abstract level. What is learned is a particular
temporal pattern and is not dependent on the order of the subin-
tervals. Of course, transfer may not be perfect. Learning can occur
at multiple levels, some of which may be abstract and others which
may be specific to a particular effector or combination of effectors
(MacKay, 1982).

This proposal has obvious relationships with a two-level model
for motor timing in which, on one level, timing goals are repre-
sented by a central timing process, and on another level, movement
trajectories are generated by an autonomous motor system in
relation with the timing goals (Shaffer, 1992). It is interesting to
note that recent attempts at modeling bimanual rhythmic move-
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ments in the dynamic systems perspective have also espoused a
two-level architecture by distinguishing between effector dynam-
ics (the domain of peripheral physical oscillators) and neural
dynamics (the domain of coupled central oscillators with time-
keeping functions; Peper et al., in press; see also Pressing, 1999).
These efforts, like ours, point to the importance of considering the
representation of temporal patterns in the control of coordination.

? Shaffer’s (1992) description of motor timing differs from the original
Wing-Kristofferson model (Wing & Kristofferson, 1973) in the interpre-
tation of the motor component.
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Appendix

Derivation of the Response Cycle Variance

Here we show that when the response cycle is produced as the sum of
two shorter subintervals, its standard deviation is less than the standard
deviation of the same response cycle when produced without any
subdivision.

Consider a sequence of response cycles with mean duration T and
standard deviation o Let ¢, and 1, represent two subintervals of 7, such
that (¢, + t,) =T, t; = al, and t, = (1 — a)T, when 0 = g = 1.
Assumption 1 is

SD(t,) = acyand SD(t,) = (1 — a)or (Weber’s law), (Al)

and Assumption 2 is

var(t, + ) = var(y;) + var(t,) (independence)
and var(;) = (aop? var(r) = [(1 — @)o7)®. (A2)
From Assumption 2, it follows that

var(t; + 8) = (aop? + [(1 — @)or)* = 042a° — 2a + 1).

Ifa =0, 1, then var(z, + t,) = 0% (no subdivision), and if 0 < a < 1, then
var(t, + t,) < 0% (subdivision), with var(¢, + ¢,) being minimum when
a = 0.5 (¢, = t,, optimal subdivision).
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