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The representation of temporal information in perception and 
motor control 
Richard B Ivry 

The representation of temporal information can be examined 
from both a neurological and a computational perspective. 
Recent evidence suggests that two subcortical structures, the 
cerebellum and basal ganglia, play a critical role in the timing 
of both movement and pemeption. At a computational level, 
models of an internal clock have been developed in which 
timing is based on either endogenous oscillatory processes 
or distributed interval-based representations derived from 
relatively slow physiological processes. 
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Introduction 
The fourth dimension of our world, time, has tended to be 
the forgotten stepchild in many theories of perception and 
motor control. Yet, actions and events take place over time. 
This review will focus on the neural and computational 
processes associated with the representation of temporal 
information. 

Even though actions evolve over time, it is not mandatory 
to postulate that temporal information is represented or 
regulated in an explicit manner. Variation in the speed and 
duration of a reaching movement might be an emergent 
property of the rate at which muscle units are recruited. 
Therefore, temporal regularities in sequential actions may 
not reflect direct control processes, but may arise because 
of the complex dynamics of the neuromuscular system. 

Nonetheless, many phenomena suggest the existence of 
an internal timing system in which temporal information 
is explicitly represented. For example, humans can readily 
discriminate the interval between two arbitrary events 
(e.g. two tones) that are separated by either 400ms or 
425ms or show high sensitivity to perturbations in a 
stream of rhythmic events. Correlations between motor 
and perceptual timing [1 °] also point toward a common 
mechanism, given that the peripheral constraints are quite 
different in these two domains. 

Neural systems associated with temporal 
behavior 
The intimate links between time perception and produc- 
tion have led researchers to wonder whether a common 
neural system is exploited in both domains. It is, of 
course, possible that there may not be a single specialized 
neural structure for timing. The representation of temporal 
information may be redundant in relatively independent 
systems or distributed across a set of neural structures. 

The cerebellum 
It has been hypothesized that the cerebellum operates 
as a specialized module for timing [2,3°°]. The evidence 
in support of this hypothesis has been marshaled from 
studies involving a number of diverse tasks. First, patients 
with cerebellar lesions show inappropriate timing in the 
activation of agonist and antagonist muscles during rapid 
limb movements [4] and increased variability during 
repetitive finger tapping [5]. 

Second, patients with cerebellar lesions are impaired 
on perceptual tasks that require precise timing [6,7,8°]. 
Converging evidence for a role in perceptual timing comes 
from a PET  study in which regional cerebral blood flow 
(rCBF) was measured while subjects listened to pairs 
of auditory intervals [9°°]. Increased rCBF was observed 
bilaterally in the cetebellar hemispheres as well as in 
inferior vermis when subjects were required to compare 
the durations of the intervals compared to a control task 
in which the responses were not related to the perceptual 
events. 

Third, the cerebellum has been shown to be the locus of 
learning in eyeblink conditioning, a Pavlovian paradigm 
in which the conditioned response is exquisitely timed 
to minimize the consequences of an aversive stimulus 
(reviewed in [10]). A series of studies with human subjects 
has confirmed the critical role of the cerebellum in 
eyeblink conditioning [11-13]. Glucose metabolism within 
the cerebellum has also been found to be greater after 
eyeblink conditioning [14°]. Associative processes are 
likely to occur at both nuclear and cortical cerebellar loci. 
However, while lesions of the deep nuclei may abolish the 
conditioned response, aspirations of the cerebellar cortex 
disrupt the timing of the response [15]. It appears that 
the cortex plays a critical role in shaping the temporal 
topography of the conditioned response. 

The basal ganglia 
The basal ganglia have also been suggested to be a key 
component in an internal timing system. Patients with 
Parkinson's disease become more variable on a repetitive 
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tapping task after skipping their normal levadopa medi- 
cation [16"]. When analyzed with the two-process model 
of Wing and Kristofferson [17], the increased variability 
was attributed to both 'clock' and 'motor implementation' 
processes (see also [18]). Similar problems were observed 
in patients with Huntington's disease [19]. 

Patients with Parkinson's disease have also been reported 
to have abnormalities in their ability to estimate temporal 
intervals [20]. The patients tend to underestimate time, 
suggesting a slowing of an internal clock. Animal studies 
have also implicated dopaminergic pathways in the 
regulation of the speed of an internal clock [21°°]. This 
work has generally involved much longer time intervals 
than those studied in the cerebellar research; for example, 
in the peak procedure, the animal is reinforced for the 
first response it produces after 30s. After training under 
drug-free conditions, rats injected with dopamine agonists 
tended to respond earlier than expected whereas the 
reverse was observed in rats given dopamine antagonists 
[22]. More recently, it has been proposed that the basal 
ganglia function as a clock-counter system [21"]. In 
this view, dopaminergic neurons of the substantia nigra, 
especially those terminating on dopamine D2 receptors, 
operate as pacemaker units, with the pulses from these 
neurons being accumulated in the dorsal striatum. 

Cortical structures 
Lesions in cortical structures can also disrupt motor timing. 
Von Steinbuchel et  al. [23] have reported a hemispheric 
asymmetry in the ability of patients with precentral 
lesions to reproduce temporal intervals. Right-hemisphere 
damage led to a consistent overestimation across a range of 
intervals from 1-5 s, whereas left-hemisphere damage was 
associated with underestimation. Patients with damage in 
either lateral premotor cortex or supplementary motor cor- 
tex have difficulty in producing rhythmic sequences [24]. 

Importantly, the patients in the latter study were unim- 
paired on perceptual tests of rhythm discrimination. The 
lack of a perceptual deficit following cortical lesions is in 
accord with other studies of patients with cortical damage 
[6,25]. Thus, it does not appear that time perception 
disturbances are a generic problem following neurological 
damage. 

Component analysis of neural structures associated with 
internal timing 
Information processing models of timing make clear 
that even simple tasks, such as duration discrimination 
or repetitive tapping, entail a number of component 
processes (e.g. [1",26]). While cortical structures have not 
been linked to an internal clock, the frontal lobe appears 
to be essential for memory and attentional operations 
required in many timing tasks, especially those with long 
intervals [27,28°]. 

Defining the roles of the basal ganglia and cerebellum in 
timing remains a subject of debate. The tasks and meas- 
ures used in these two literatures have tended to be quite 
different. Cerebellar research has focused on relatively 
short intervals, usually under 1 s, and the emphasis has 
been on variability. In contrast, intervals spanning many 
seconds characterize most of the basal ganglia research, 
and here the emphasis has been on clock rate (i.e. 
bias) rather than variability. Considerations of temporal 
range may provide an important clue for dissociating the 
functions of these two subcortical structures. Clarke et al. 

[29 ° ] trained rats on two time-discrimination tasks, one in 
which the intervals were centered around 500 ms and the 
other in which the intervals were centered around 30s. 
Cerebellar lesions led to a selective impairment on the 
short duration task. 

On the other hand, the two systems may both contribute 
to temporal performance. Some researchers favor a view 
in which the representation of temporal information is 
distributed across the two systems [16°°]. Alternatively, 
the basal ganglia and cerebellum may perform separable 
operations, and the similar performance deficits observed 
following lesions to either structure may reflect limitations 
in our current analytic tools. For example, the two-process 
model used to isolate 'clock' variability during repetitive 
tapping lumps the contributions from all processes up- 
stream from the final motor commands [1°]. 

C h a r a c t e r i z i n g  an in terna l  c lock  
The previous discussion has focused on the literature at- 
tempting to localize an internal timing system. Paralleling 
this search has been more theoretically oriented research 
aimed at describing how time is represented in the nervous 
system. 

Oscillator models  
Endogenous rhythms are observed at multiple levels of the 
nervous system, operating over many different time scales. 
Circadian rhythms, regulating metabolic and behavioral 
activity over 24-hour cycles have been associated with the 
superchiasmatic nucleus of the brainstem [30]. In motor 
control studies, researchers have elegantly described how 
central pattern generators, composed of small networks of 
spinal neurons, produce complex patterns of locomotion 
[31]. The existence of such periodic mechanisms moti- 
vated models of time perception and production centered 
on a putative central pacemaker. 

One such model has been proposed by Treisman [32]. 
In this model, the temporal pacemaker is composed 
of two parts: an oscillator and a calibration unit. The 
oscillator produces an output at a constant frequency. The 
calibration unit re-scales this base frequency as a function 
of external influences and task demands. Together, this 
pacemaker provides flexible timing information. Using a 
series of interference tests in time production and percep- 
tion experiments, estimates of the oscillatory frequency 
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Figure 1 

Two mechanisms for representing 
temporal information. (a) Clock-counter 
models postulate a pacemaker that 
produces output to a counter. Longer 
intervals are represented by increases 
in the number of pacemaker outputs 
that accumulate in the counter. 
(b) Interval-based models assume that 
different intervals are represented by 
distinct elements, each corresponding 
to a specific duration. 
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have converged on a value of approximately 49 Hz [33,34]. 
This value is of interest given recent neurophysiological 
evidence suggesting that oscillatory brain activity near 
40 Hz might serve as a mechanism for integrating activity 
across different neural regions [35,36,37°]. By allowing 
for flexibility in the calibration unit, pacemaker models 
can account for why the subunits of an action retain 
their proportional timing when that action is performed at 
different overall rates [38°°,39°°]. 

Distributed timing mechanisms 
Pacemaker models assign the origin of temporal informa- 
tion to a single mechanism (Figure la). This need not 
mean that there is a single oscillator; a set of  similarly 
entrained oscillators can provide reliability and robustness 
[21°°]. Alternative timing models emphasize a distributed 
representation in which temporal information is encoded 
across a set of processors tuned with differential sensitivity 
functions. An analogy can be drawn here to the way 
cells in the visual cortex are tuned to edges at different 
orientations. T h e  distribution of temporal information, 
however, may be functional rather than structural. To date, 
physiologists have not observed chronotopic maps in any 
brain area. 

Neural network models have been used to explore 
the viability of  distributed models of timing. Some of 

these models still retain the basic oscillatory idea, but 
envision either a series of harmonically related oscillators 
[40] or a population of oscillators distributed around 
a mean frequency [41]. By selecting combinations of 
these oscillators or exploiting beat frequencies (phase 
interactions) such networks can encode intervals over a 
range of durations. 

An alternative metaphor for a timing mechanism is 
given by the hour-glass (see Figure lb). While there is 
still periodicity at a microscopic level (e.g. the falling 
grains of sand), the system as a whole represents a 
particular interval. The  representation of time may then be 
distributed across a set of such interval timers, each with 
a particular processing cycle. In such models, intervals of 
300 ms and 400 ms are represented by distinct mechanisms 
(Figure lb); in clock-counter models, short and long 
intervals are constructed from the same mechanisms, 
with the counter threshold increased in the latter case 
(Figure la). 

Interval-based models have been used to explore how 
the cerebellar cortex might encode the precise timing 
between the conditioned stimulus (CS) and unconditioned 
stimulus (US) in eyeblink conditioning. In computer 
simulations, a population of different intervals can be 
created by incorporating neuronal processes that operate 
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Figure 2 

Hypothesized functional architecture of 
how temporal information is represented 
in the cerebellum. (a) Analogous to 
the way in which orientation, spatial 
position, and input source are reflected 
in the organization of the visual cortex, 
(b) cerebellar neurons are hypothesized 
to be tuned to particular intervals 
(depicted as different symbols) and linked 
to specific input and/or output systems 
(depicted in different shades of gray). 
RVF, right visual field. 
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over relatively slow time scales. This may occur through a 
negative feedback loop involving granule and Golgi cells 
[42] or by varying the activation function of Purkinje cells 
via a second-messenger glutamate system [43°]. In both 
systems, learning centers on identifying the CS-related 
activity that is maximal near the time of arrival of the signal 
triggered by the US. Models such as these essentially 
transform temporal information into a spatial code [44"]. 

There are a variety of reasons favoring interval timing 
mechanisms over oscillatory mechanisms. First, they offer 
a principled reason why timing is most accurate over 
a limited range of durations [45] and why eyeblink 
conditioning is optimal over a narrow range of durations 
[46]: this constraint presumably reflects the range of 
intervals that the system is capable of representing. 
Second, they are well suited for allowing behavior to be 
maximally flexible. Time production and perception are 
not constrained by a fundamental frequency. For example, 
an animal could learn any arbitrary interval between the 
CS and US in eyeblink conditioning. Third, contrary to 
the predictions of oscillator" models, subjects are no better 

on duration discrimination tasks when the comparison and 
test intervals are in phase with one another compared to 
when they are out of phase [1",47]. 

Temporal coupling is a ubiquitous property of multi- 
cffector movements (reviewed in [48]). Assuming that 
the timing of these movements is centrally controlled, 
temporal coupling would suggest either that the different 
limbs are governed by a single timing process [49] or that 
separate timing mechanisms become functionally coupled. 
Evidence from bimanual tapping studies favor the latter 
hypothesis [50°°]. Within-hand variability was reduced 
when the two hands tapped together in comparison 
to when either hand tapped alone. The magnitude of 
the improvement suggests that two independent timing 
signals were generated, one for each hand, and that these 
signals were 'averaged' by a common output gate, ensuring 
interlimb coordination. In a related study [51], tapping 
variability was reduced in the ipsilesional hand in patients 
with unilateral cerebellar lesions during bimanual tapping. 
Rather than assume that timing was regulated by the intact 
half of the cerebellum, the multiple timer model assumes 
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that separate timing signals, one noisier than the other, are 
associated with the movements of each limb. 

This model extends the notion of interval-based timing 
by proposing not only multiple timing mechanisms, but 
also that these mechanisms are linked to particular task 
domains (Figure 2). Thus, in bimanual tapping, different 
timing mechanisms must be accessed for each effector, 
even when the movements are performed in synchrony. 
According to this view, there would be a set of timing 
elements to regulate tapping at different rates with one 
limb, with this organization repeated for other limbs. 
Similarly, sensory input to the timing system would not 
need to access the identical units used in motor timing. 
Correlations across different temporal tasks need not 
reflect the operation of a single clock, but may reflect the 
fact that the timing system as a whole is associated with 
common noise properties. 

Conclusions 
This review has addressed two primary issues guiding 
current research on how the nervous system represents 
temporal information in perception and production. In 
the first half, the focus was on research seeking to 
identify neural structures associated with temporal pro- 
cessing. Both the cerebellum and basal ganglia have been 
hypothesized to play a critical role in internal timing. 
While these subcortical structures may form an integrated 
circuit with their respective roles yet to be defined, 
it is also possible that the cerebellum operates over a 
relatively short temporal window and that timing functions 
of the basal ganglia are utilized in tasks spanning longer 
durations. Dissociations between these two structures are 
likely to emerge from experiments using common tasks 
and measures. 

The second half of this review explored different mecha- 
nisms that might form the basis for the representation of 
temporal information. The traditional view has been that 
temporal codes rely on endogenous oscillatory processes. 
Recent challenges to this idea come from network models 
in which time is distributed across a set of neural elements, 
with the different elements providing an interval-based 
representation. This distributed representation could be 
restricted to a single neural structure such as the 
cerebellum. In this view, the representation of time might 
be one defining property of the computational capability 
of that structure, although the exact elements recruited 
would be task-dependent. This hypothesis seems more 
biologically plausible in comparison to models postulating 
a single internal clock. 
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