
SRT task. We note that in the ASRT task high temporal
variability could reflect a difference in RT between high-
and low-frequency triplets, a difference that is accentuated
in good learners. However, the positive correlation is also
observed when the analysis is performed separately for the
high and low triplets (high: r � 0.52, P � 0.05; low: r �
0.57, P � 0.01).

Analysis of questionnaire data (Fig. 5C) indicated that par-
ticipants were not aware of the presence of a repeating prob-
abilistic sequence. Only a third (33%) of the participants
reported that they “experienced any change in the experiment
during the test session.” From the Likert scale, participants
were more likely to judge that they had been in the random (no
sequence) group (2.62 � 1.32).

To summarize, we observed impressive reliability in mea-
sures of performance and learning on probabilistic sequence
learning. Learning the probabilistic sequence was implicit for
all participants and higher for those with slower baseline RTs
and higher baseline variability.

Individual Differences Across Tasks

The participants in groups 3 and 4 completed two implicit
motor learning tasks, the VMA and the SRT tasks (group 3) or
the VMA and ASRT tasks (group 4). We compared perfor-
mance across tasks, asking whether there are consistent indi-
vidual differences in implicit learning in two distinct task
domains. Within each task, we averaged performance across
the two runs. Note that given the lack of reliable learning in the
late probe for the SRT task, the data from this task should be
viewed cautiously.

Tables 1 and 2 present the correlation matrix and Fig. 5
depicts correlations between the different measures for each
task. Overall, there was little correlation between the rate of
adaptation and the magnitude of sequence learning, the key
measures of implicit learning. There was essentially no
correlation between VMA adaptation and SRT learning
(Fig. 5A), measured either at the end of training or at the
midpoint of the task (where learning is likely implicit and

Fig. 4. ASRT results (n � 25). A: group average of median RT for run 1 and run 2 (left), divided into low- and high-frequency triplets (center), and as difference
scores (right). B: reliability of RT, temporal variability, and learning between run 1 and run 2 scores. Baseline metrics of RT and the SD of RT are based on data from
blocks 2 and 3 (early in training); learning is averaged over blocks 4–45. C: correlations between different measures of performance.
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the measure was reliable). Regarding ASRT, there was a
positive correlation, albeit nonsignificant, between VMA
adaptation and ASRT learning over all participants (Fig. 5B;
r � 0.38, P � 0.17, 95% CI � [�0.14, 0.65]). However,
this correlation is largely driven by one participant who
showed faster adaptation and higher sequence learning. We
consider the effects of this outlier in two ways. First, when
we simply removed this data point, not only did the corre-
lation coefficient become much weaker but the direction
actually reversed (r � �0.17, P � 0.48, 95% CI � [�0.57,
0.3]). Second, we used a more conservative winzoring
procedure, replacing the values of the outlier with the
SRT/VMA values from the closest neighbors. This proce-
dure also indicated that there was no correlation between the
two learning scores (r � 0.03, P � 0.87, 95% CI � [�0.4,
0.46]). In sum, both trimming methods indicate that there is
no relationship between learning on the ASRT and VMA
tasks. Thus the correlational data fail to support the hypoth-
esis that there is some common process that contributes to
implicit motor learning across task domains.

The correlation matrix does highlight one other important
result. Learning was correlated with motor variability for
both the adaptation and sequence learning tasks. However,
the direction of the correlation was the opposite. For adap-
tation, the correlation was negative, suggesting that partic-
ipants with high spatial variability adapt at a slower rate. For
sequence learning, the correlation was positive, suggesting
that participants with high temporal variability learn sequen-
tial associations at a faster rate. This effect was only

significant for the ASRT task; nonetheless, a similar pattern
was observed in the late phase of the SRT task.

DISCUSSION

Motor skills occupy a prominent place as representative
of implicit or procedural memory in standard memory tax-
onomies (Squire and Zola 1996; Sun et al. 2007). We used
an individual differences approach to examine the relation-
ship between two classes of tasks commonly used to study
implicit motor learning, sensorimotor adaptation and se-
quence learning. Participants were tested in two separate
runs, allowing us to first examine whether measures of
learning and performance were reliable—a prerequisite for
evaluating individual differences. We then examined factors
that might account for individual differences within each
task, as well as the relationship in learning between the two
task domains.

Reliability of Implicit Learning

Surprisingly, we were unable to find any previous work
examining the reliability of individual differences in implicit
motor learning. Studies that tested people over multiple days
have generally focused on consolidation and thus repeated the
exact same task over successive days to look at variables such
as forgetting or off-line learning (for example, Doyon et al.
2009; Krakauer 2009; Meier and Cock 2014; Nemeth et al.
2010). These consolidation factors limit our ability to draw
inferences about reliability because there might be individual

Fig. 5. Between-task correlations of learning
scores. A: correlation between learning mea-
sures of visuomotor adaptation SRT using
the final probe of SRT learning (left) and
midway SRT learning (right). B: correlation
between learning measures on visuomotor
adaptation and ASRT. Note that the positive
correlation is largely influenced by the par-
ticipant who had the fastest rate of adapta-
tion and exhibited the largest amount of
sequence learning. When the correlation is
recalculated without this individual, there is
no correlation between the learning mea-
sures for the 2 tasks (r � �0.17, P � 0.48).
C: histogram of responses on Likert scale to
survey question probing awareness of the
perturbation (VMA) or sequence (SRT and
ASRT). Low values correspond to low
awareness; high values correspond to high
awareness. Although all of the scores are
toward the lower end, there is a rightward
shift of the distribution for the SRT task,
indicative of higher awareness of the pres-
ence of a sequence.
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differences in consolidation and other memory processes. Sav-
ings, the phenomenon in which people show faster relearning
of a previously forgotten memory, has been observed in visuo-
motor adaptation tasks, but these studies have not reported
individual differences and have used conditions in which
participants are likely aware of the perturbation (Morehead et
al. 2015; Zarahn et al. 2008).

In the present study, we observed reliable individual differ-
ences in core performance measures. Focusing just on the data
from the baseline phase of the tasks, MT was highly correlated
across runs in the VMA task and RT was reliable in both the
SRT and ASRT tasks. We do not consider these differences as
indicative of some sort of individual limit in performance.
Rather, they may be best viewed as a “signature” of a consis-
tent individual style, perhaps reflecting an idiosyncratic crite-
rion for how people choose to trade off speed and accuracy in
the context of each task. During the second exposure to the
tasks, participants reached faster in the VMA task and had
faster RTs in the sequence learning tasks, suggesting that
familiarity with the tasks led to similar improvements (broadly
speaking) across participants.

Our main interest was to ascertain the reliability of measures
of implicit learning. The rate of trial-by-trial adaptation exhib-
ited reasonable reliability across runs on the VMA task with
trial-by-trial adjustments that, on average, corrected for �10%
of the error. Similarly, learning, measured by the difference in
RT to high- and low-predictability stimuli, was reliable in the
ASRT task with a mean overall difference of 12 ms between
the high- and low-frequency elements. Post-experiment ques-
tionnaires confirmed that learning in the VMA and ASRT tasks
was implicit. We employed a very gradual perturbation in the
VMA task and never allowed the perturbation to exceed 12°.
For the ASRT task, various lines of evidence suggest that the
presence of random elements for 50% of the trials completely
disrupts awareness of the repeating elements (for example,
Howard and Howard 1997; Nemeth et al. 2010). The modest
learning scores are also consistent with the hypothesis that
learning was implicit.

Whereas we found consistent group-level learning on the
SRT task, the standard probes of learning were not reliable
across runs: On both runs there was a marked increase in RT
on the final Random blocks relative to surrounding Sequence
blocks, but the magnitude of this increase was inconsistent

between the two runs at the individual level. We are of the
opinion that at least two factors account for the lack of
reliability on the SRT task. First, learning on the form of the
SRT task used here is based on a measure that requires
averaging data across all of the trials within a block and then
comparing means across blocks. Variables that might introduce
block-by-block variation or low-frequency changes in perfor-
mance can have a large impact on such measures. For example,
the motivation level or idiosyncratic speed-accuracy criterion
might fluctuate from one block to the next. The VMA and
ASRT tasks are not impacted by such factors given that their
learning measures are continuously based on trial-to-trial per-
formance.

Second, the lack of reliable SRT learning could be related to
awareness. There is an extensive literature concerning the role
of awareness in the SRT task, as well as the methodological
challenges for assessing or eliminating/minimizing awareness
(for example, by adding a concurrently secondary task: Ghey-
sen et al. 2009; Grafton et al. 1998; Hazeltine et al. 1997;
Sanchez et al. 2010; or by using long sequences: Pascual-
Leone et al. 1993; Sanchez and Reber 2012; Spencer and Ivry
2009). Empirically, a number of the participants exhibited a
large increase in RT on the Random blocks in the late learning
probe (for example, 30% had an increase 	50 ms), a difference
that, in conjunction with fast RTs on the Sequence blocks, is
suggestive of awareness. Moreover, while we recognize the
limits in drawing comparisons between the tasks on the ques-
tionnaire data, it is noteworthy that the participants’ confidence
in the presence of a repeating pattern was higher in the SRT
task compared with the ASRT task and higher than partici-
pants’ confidence in the presence of a perturbation in the VMA
task. Awareness would contaminate our measure of implicit
learning (Reber and Squire 1998; Willingham et al. 1989) and
impact assessments of reliability. Consistent with this hypoth-
esis, we observed a modest correlation of the learning scores at
the midtask probe, a time point at which we expect awareness
to be lower.

Note that the contamination from awareness could either
increase or decrease reliability. If a subset of the participants
were aware (and thus had larger learning scores) on both run 1
and run 2, the correlation would be inflated. On the other hand,
awareness could decrease reliability if different subgroups of
participants became aware in run 1 and run 2. The reported
results suggest that the latter is more likely to have occurred
here. We do not claim that explicit learning is unreliable. Had
we used a completely explicit sequence-learning task, reliabil-

Table 1. Correlation matrices of key performance and learning
variables for VMA and SRT tests

SRT VMA

tSD Learning
Initial

Learning MT sSD LR

SRT
RT 0.02 �0.31* �0.58*** 0.08 0.37* 0.08
tSD �0.06 0.28 �0.05 �0.02 0.04
Learning 0.54** 0 �0.04 �0.06
Initial
learning �0.27 �0.22 �0.07

VMA
MT �0.08 0.21
sSD �0.4*

Subsets of participants who completed both visuomotor adaptation and
sequence learning. *P � 0.05, **P � 0.005, ***P � 0.001.

Table 2. Correlation matrices of key performance and learning
variables for VMA and ASRT tests

ASRT VMA

tSD Learning MT sSD LR

ASRT
RT 0.44* 0.42 0.30 �0.17 0.14
tSD 0.57** �0.02 �0.06 0.11
Learning �0.04 �0.19 0.31

VMA
MT �0.20 0.04
sSD �0.45*

Subsets of participants who completed both visuomotor adaptation and
sequence learning. *P � 0.05, **P � 0.005.
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ity might have been high. The problem, though, is when a
measure of learning is a composite of multiple processes and
that the weight given to those processes varies across measure-
ments.

In summary, the present results indicate that implicit mea-
sures of learning were reliable at the individual level in
response to a pseudorandom visuomotor rotation and in be-
coming sensitized to the predictability of sequential elements.
The lack of reliability in the SRT task presents a challenge for
studies that have used this task to explore individual differ-
ences (Noohi et al. 2014; Norman et al. 2007; Unsworth and
Engle 2005), and the presence of awareness also compromises
the utility of this task for studying implicit learning (Grafton et
al. 1998; Hazeltine et al. 1997; Keele et al. 2003). For example,
despite concurrently performing a secondary task, participants
could have developed different levels of awareness to the
repeating sequence (which would be difficult to track by
directly asking participants at the end of the task).

Is There a Common “Implicit Motor Learning” Component?

Studies of individual differences in motor control and learn-
ing have a long history. One prominent claim has been that
differences are task specific, a hypothesis supported by studies
using large test batteries (for example, Parker and Fleishman
1960) or studies of expertise (Bachman 1961; Chase and
Simon 1973; Mann et al. 2007). An alternative perspective,
advocated by Franklin Henry’s “specificity hypothesis” (see
Henry 1968), is that some component of individual differences
arises from a set of core operations that are shared across tasks.
Drawing on this idea, Keele and colleagues (Ivry and Keele
1989; Keele et al. 1985, 1987) provided evidence that individ-
ual differences in motor control might reflect variation in how
consistent people are in controlling certain parameters of
movement such as timing, force, or rate. For example, people
who were consistent in timing repetitive movements also
exhibited consistent timing when producing isometric force
pulses or in judging the duration of events. These ideas, in
combination with evidence from neuropsychological studies
(for example, Ivry and Keele 1989), led to models in which
different neural systems were associated with particular com-
ponent operations.

Extending the logic of that line of work, we asked here if
“implicit motor learning” might constitute a core component of
skill acquisition (see Conway et al. 2010). To this end, we
looked at between-task correlations. Given the reliability in the
VMA and ASRT tasks, we combined the results from the two
runs in making these comparisons. We also included the SRT
task, although these data should be viewed cautiously given the
lack of reliability in the measure of learning. The results
revealed no correlation between the learning measures on the
different tasks, arguing against the notion of a common im-
plicit learning process shared across motor learning tasks, at
least for visuomotor adaptation and sequence learning.

The lack of correlation might be surprising given that learn-
ing in both tasks has been associated with cerebellar function.
Patients with cerebellar pathology, from either focal insult or
degeneration, have pronounced impairments in learning when
tested on sensorimotor adaptation (Donchin et al. 2012; Martin
et al. 1996; Rabe et al. 2009; Schlerf et al. 2013; Shin and Ivry
2003; Smith and Shadmehr 2005; Taylor et al. 2010; Tseng et

al. 2007; Werner et al. 2010) and sequence learning tasks
(Gómez-Beldarrain et al. 1998; Molinari et al. 1997; Pascual-
Leone et al. 1993; Shin and Ivry 2003; but see Spencer and
Ivry 2009). Neuroimaging studies in humans (Bernard and
Seidler 2013; Danckert et al. 2008; Della-Maggiore and
McIntosh 2005) also point to an essential role for the cerebel-
lum, in generating the error signals to guide learning (Diedrich-
sen et al. 2005; Schlerf et al. 2013) and/or in generating the
predictions of expected sensory events (Ramnani et al. 2000).
Given the implicit nature of these tasks and the association of
the cerebellum with both sensorimotor adaptation and se-
quence learning, one might have expected to observe a corre-
lation in learning between the learning tasks.

However, several explanations might account for why the
measures of learning were not correlated. First, based on
computational considerations, adaptation and sequence learn-
ing require very different learning mechanisms and operations.
Adaptation is error driven, entailing the modification of an
internal model based on the difference between predicted and
observed sensory feedback (Taylor and Ivry 2012). Error-
based learning is likely to contribute minimally to sequence
learning; here, learning involves the formation of associations
between successive stimulus-response pairs, supporting the
establishment of predictions from one S-R element to the next.
This process, at least when arising implicitly, might be more of
a Hebbian-like process (Lu et al. 1998; Nixon and Passingham
2000; Spencer and Ivry 2009). As such, adaptation involves
changes in terms of refining execution, whereas sequence
learning is more about priming for action selection.

Second, the linkage of both tasks through their association
with the cerebellum is, at best, superficial. The cerebellum is a
large structure, and although it has been associated with both
adaptation and sequence learning, one need not assume that
these two task domains engage similar regions and/or cerebel-
lar operations. Indeed, the evidence suggests that adaptation
and sequence learning tasks may engage distinct cerebellar
regions and cortico-cerebellar loops (Buckner et al. 2011;
Kelly and Strick 2003; Krienen and Buckner 2009; Strick et al.
2009). Neuropsychological and neuroimaging evidence point
to the involvement of motor regions of the cerebellum in
adaptation tasks, including cerebellar regions with relatively
clear somatotopy. These regions exhibit strong functional con-
nectivity with motor cortex (Bernard and Seidler 2013; Burciu
et al. 2014), as was found even during sensorimotor adaptation
tasks (Burciu et al. 2014; Rabe et al. 2009). Sequence learning,
on the other hand, has been linked with neocerebellar regions
that are functionally connected with premotor and prefrontal
cortex (Bernard and Seidler 2013; Nixon and Passingham
2000; Ramnani et al. 2000; Seidler et al. 2002; although it
remains unclear whether this holds for both explicit and im-
plicit conditions, see Hazeltine et al. 1997). Moreover, it
remains unclear whether the cerebellar contribution to se-
quence learning is directly related to learning per se or is
indirect, related to the formation and/or maintenance of the
stimulus-response associations (Nixon and Passingham 2000;
Spencer and Ivry 2009).

In future work it will be interesting to exploit individual
differences in comparing cerebellar contributions to adaptation
and sequence learning. For example, we might expect that
functional connectivity between cerebellar regions and primary
motor cortex will be predictive of learning rates in sensorimo-
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tor adaptation (Bernard et al. 2012; although see Rabe et al.
2009), whereas functional connectivity between cerebellar re-
gions and premotor/prefrontal cortex will be predictive of
sequence learning.

We recognize that our assays of learning for visuomotor
adaptation and sequence learning involve very different mea-
sures (spatial accuracy vs. RT). There are cases in which
performance measured in different units and on different scales
do correlate (for example, mathematical skill, verbal fluency,
and spatial visualization, among others, composing a construct
of general intelligence, g) (Spearman 1904). Thus the use of
different measures does not inherently impose a bias against
observing a relationship between the two domains of implicit
learning. Nonetheless, it would be interesting to compare tasks
of implicit learning in which more similar measures were
employed, for example, by using adaptation to a temporal
delay.

Within-Task Behavioral Predictors of Implicit Learning

The preceding discussion indicates that there is little
commonality between processes involved in implicit adap-
tation and implicit sequence learning. A different question
concerns predictors of each of these forms of learning. To
address this question, we focused on baseline measures of
performance, using data obtained prior to the onset of the
perturbation in the VMA task or during the early stages of
the sequence tasks when there was little evidence of learn-
ing. We looked at two features of baseline performance:
speed and variability.

As a measure of performance speed, we used MT in the
VMA task and RT in the sequence-learning task, the temporal
measures that were emphasized in the instructions used for
each task. There was no relationship between MT and the rate
of adaptation. In contrast, RT was correlated with sequence
learning. However, the direction of the correlation was in
opposite directions for the two sequence learning tasks: For
SRT, the correlation was negative, with faster responders
exhibiting the largest degree of learning; for ASRT, the corre-
lation was positive, with the slower responders exhibiting the
largest degree of learning.

The ASRT task is consistent with other work showing that
the benefits of associative retrieval processes become higher as
RT increases (Chenery et al. 1994). A similar idea could
account for the positive correlation between RT and learning in
the ASRT task. However, this hypothesis would also predict a
similar pattern in the SRT task, whereas here the correlation
was reversed. It might be that the reversal is related to the
concern discussed above, namely that some participants may
have developed a degree of awareness in the SRT task. Aware-
ness would not only lead to the largest cost on the Random
blocks (high magnitude of learning) but should also lead to fast
RTs (namely, expecting and even predicating the next stimu-
lus-response pair). We recognize that our interpretations of
these RT relationships are speculative and call for further
study.

Next, we considered how performance variability was re-
lated to individual differences in learning. For variability, we
used a measure of spatial variability for the VMA task, using
the SD of the heading angle during the baseline block (no
perturbation). For the sequence learning tasks, we used the SD

of the RTs in the early blocks. Here we observed reliable
correlations between measures of variability and learning on
both the VMA and ASRT tasks. The rate of adaptation was
negatively correlated with variability, such that faster learning
was associated with more consistent reaches. In contrast, the
magnitude of sequence learning was positively correlated with
variability, such that the extent of learning was highest for
participants who were most variable in RT. A similar pattern
was also observed in the SRT task. We recognize that there are
differences in our measures of variability for the two task
domains; in particular, one is a spatial measure and the other a
temporal measure. Nonetheless, we chose these variability
measures since they are closest to the dependent variable
related to learning on each task.

The negative relationship between variability and learning
rate on the VMA task is consistent with models in which motor
output or sensory noise modulates the weight given to an error
signal (Baddeley et al. 2003; van Beers 2009; Burge et al.
2008; Körding and Wolpert 2004; Schlerf et al. 2013). In
conditions of high noise, these models would predict that the
motor system would reduce its learning rate because confi-
dence (or certainty) in the sensory signal is low; the converse
is true in conditions of low noise. We would expect this
relationship to be especially pronounced in the present study
given our use of a small perturbation, one in which learning
was entirely implicit. Indeed, the size of the perturbation
change from trial to trial never exceeded 2°, falling within 1
SD of the expected distribution of end points for reaches in the
absence of any perturbation.

An error-based account does not seem appropriate when
considering sequence learning, because the fundamental learn-
ing mechanism here entails an associative process, one that
learns to predict successive elements in a chain of events. As
such, the absence of a negative correlation between our per-
formance measure of variability, the SD of RT, and sequence
learning is not surprising. However, the reversal to a positive
correlation is intriguing. Wu and colleagues (Wu et al. 2014)
observed a similar relationship, albeit in measures of spatial
variability, in a task in which participants had to learn a
complex trajectory or force field. They hypothesized that
higher variability enabled increased exploration of the work-
space and thus allowed participants to discover the appropriate
solution. An extension of the exploration idea to account for
the positive correlation in the sequence learning tasks in the
present study is not straightforward: It is not obvious how
higher temporal variability promotes, or reflects, exploration.
Perhaps temporal variability is indicative of a variable retrieval
process and this variability helps with the formation of sequen-
tial associations. Related to this idea, temporal variability was
correlated with mean RT in the ASRT task (even after normal-
izing the temporal variability by mean RT) and, as described
above, longer (and more variable RTs) might have allowed
greater spreading activation from one element to the next. Our
sequence learning data suggest that motor variability should
not be considered merely the inevitable consequence of signal-
dependent neural noise in the motor system that ought to be
overcome but can instead be viewed as a key ingredient of
learning, centrally driven and actively regulated, that the motor
system leverages during learning.
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