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Humans exhibit complex mathematical skills attributed to the exceptional enlargement of neocortical regions throughout evolution.
In the current work, we initiated a novel exploration of the ancient subcortical neural network essential for mathematical cognition.
Using a neuropsychological approach, we report that degeneration of two subcortical structures, the cerebellum and basal ganglia,
impairs performance in symbolic arithmetic. We identify distinct computational impairments in male and female participants with
cerebellar degeneration (CD) or Parkinson's disease (PD). The CD group exhibited a disproportionate cost when the arithmetic sum
increased, suggesting that the cerebellum is critical for iterative procedures required for calculations. The PD group showed a
disproportionate cost for equations with increasing addends, suggesting that the basal ganglia are critical for chaining multiple
operations. In Experiment 2, the two patient groups exhibited intact practice gains for repeated equations at odds with an alternative
hypothesis that these impairments were related to memory retrieval. Notably, we discuss how the counting and chaining operations
relate to cerebellar and basal ganglia function in other task domains (e.g., motor processes). Overall, we provide a novel perspective
on how the cerebellum and basal ganglia contribute to symbolic arithmetic. Our studies demonstrate the constraints on the
computational role of two subcortical regions in higher cognition.
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Significance Statement

Research on the neurobiology of mathematics has focused on the cerebral cortex, particularly the frontoparietal regions. In
the present study, we asked how disorders primarily affecting subcortical structures impact performance on symbolic arith-
metic operations. Participants with Parkinson's disease showed a greater impairment as the number of operations increased,
and participants with cerebellar degeneration showed a greater impairment as the magnitude of the operations increased.
This selective impairment points to the distinctive roles of the cerebellum and basal ganglia in symbolic arithmetic. These
results suggest that two major subcortical structures can support symbolic complex cognition.

Introduction
A hallmark of human cognition is our ability to engage in com-
plex reasoning that requires the understanding and utilizing of
abstract concepts. One powerful example of this is mathematical
cognition.While a sense of quantity and simple processes may be
observed in many species (Agrillo et al., 2008, 2010; Dadda et al.,

2009; Leibovich-Raveh et al., 2021), humans are unique in their
ability to engage in symbolic arithmetic reasoning. Even solving
a relatively simple addition problem (e.g., 5 + 7 = 12) is a complex
cognitive process, requiring several numerical (e.g., counting)
and more generic (e.g., memory retrieval) mental processes.

Our understanding of the neural network essential for math-
ematical cognition has benefitted from the use of the many tools
of cognitive neuroscience. One prominent theme is the impor-
tance of neocortical regions, particularly the central role of fron-
toparietal neocortical areas (Gruber et al., 2001; Dehaene et al.,
2004; Ansari and Dhital, 2006; Grabner et al., 2009; Zamarian
et al., 2009; Arsalidou and Taylor, 2011; Andres et al., 2011;
Cohen-Kadosh and Dowker, 2015). Meta-analyses of functional
magnetic resonance imaging (fMRI) data point to the consistent
engagement of the inferior parietal lobule and subregions of the
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prefrontal cortex during arithmetic calculations (Arsalidou and
Taylor, 2011). Developmental imaging studies have shown
that the intraparietal sulcus (IPS) is a biomarker of arithmetic
skills (Isaacs et al., 2001; Emerson and Cantlon, 2015).
Correspondingly, neurological patients with damage to these
regions exhibit impairments on tests of mathematical cognition
(Van Harskamp and Cipolotti, 2001).

Notably, there has been little discussion of the possible contri-
bution of subcortical regions to mathematical cognition (Saban
and Gabay, 2023) and most of the previous research has con-
sisted of case studies (Ojemann, 1974; Corbett et al., 1986;
Hittmair-Delazer et al., 1994, 1995; Dehaene and Cohen,
1997). This is surprising given the expanding appreciation of
the contribution of subcortical regions to higher-level cognition
(Buckner, 2013; Saban et al., 2017, 2018c, 2019, 2021). Indeed,
the functional domain of two prominent subcortical structures,
the cerebellum and basal ganglia has been recognized to extend
beyond the motor domain (Owen et al., 1992; Middleton and
Strick, 1994; Balsters et al., 2013; Sokolov et al., 2017; Bostan
and Strick, 2018; Schmahmann, 2019). Both regions have recip-
rocal connectivity with many of the cortical areas associated with
mathematical cognition (Ide et al., 2011; Bostan and Strick, 2018;
Milardi et al., 2019) and, although outside the focus of neuroim-
aging studies, activation changes in both the cerebellum and
basal ganglia have been consistently observed even in contrasts
that control for overt motor responses (Ischebeck et al., 2007;
Zago et al., 2008).

In terms of neuropsychological research, studies involving
individuals with Parkinson's Disease (PD) have generally been
descriptive, involving assessments with a range of instruments
used to evaluate mathematical abilities (Tamura et al., 2003;
Delazer et al., 2004; Zamarian et al., 2006). In general, basic
mathematical processes such as counting, magnitude compari-
son, and basic arithmetic procedures (e.g., addition, subtraction)
appear to be unaffected in PD. The few reports of impairment
tend to be on tasks that require solving relatively complex equa-
tions, where complexity might be number of single-digit num-
bers that can be mentally added or the time required to solve
an equation (e.g., 2 + 5 + 3 + 7 + 6). However, these studies have
not directly manipulated or even operationalized complexity;
as such, they do not provide clear insight into the specific com-
putations affected by PD.

Even less research has examined how cerebellar dysfunction
impacts mathematical cognition. We recently tested participants
with cerebellar degeneration (CD) on a verification task in which
they had to add or multiply two single-digit numbers. The CD
group demonstrated an intriguing dissociation: Whereas they
exhibited the typical increase in response time (RT) as the calcu-
lated sum becomes larger for addition and multiplication prob-
lems [i.e., the problem size effect (Ashcraft and Guillaume,
2009)], the slope of this function was selectively elevated relative
to controls in the addition condition only (McDougle et al.,
2022). We hypothesize that this impairment reflects a slowed
rate of spatial movement along a “mental number line.”

In the current study, we take a neuropsychological approach
to further explore the role of subcortical regions in mathematical
cognition. We compared the performance of individuals with
CD, PD and neurotypical control participants on an arithmetic
verification task (AVT). We used manipulations that allowed
us to probe two core procedures for addition, counting, and
recursion, with the former manipulated by varying the sum of
the equation and the latter manipulated by the number of
addends. Although the sparsity of prior work on this problem

precludes strong predictions, we expected the CD group would
exhibit a larger effect on sum manipulation, consistent with
our earlier findings. Given the role of the basal ganglia in a variety
of tasks that require chaining together multiple steps (Pascual-
Leone et al., 1993; Meiran et al., 2004; Shohamy et al., 2005;
Muslimović et al., 2007), we predicted that the PD group would
show a disproportionately larger cost on problems involving
more addends. In a second experiment, we measured the short-
term practice benefits exhibited by the three groups on the addi-
tion problems, asking if either patient group exhibited a learning
impairment in the use of arithmetic algorithms or memory
retrieval (Logan, 1988; Rickard, 1997; Tenison et al., 2016).

Materials and Methods
Participants. An online platform, PONT (Saban and Ivry, 2021;

Binoy et al., 2023), was used to recruit and test the participants. PONT
entails five primary steps: (1) contact support group leaders/web-based
platforms to advertise the project; (2) provide means for interested indi-
viduals to initiate contact, a requirement set by our IRB protocol; (3) con-
duct interactive, remote neuropsychological assessments; (4) automated
administration of the experimental tasks; and (5) provide payment and
obtain user feedback.

At the time of this project, there were approximately 183 individuals
in the PONT database (Binoy et al., 2023). For Experiment 1, invitations
were sent to 47, 72, and 64 individuals in the Control, CD, and PD
groups, respectively. The overall response rate to the first email was
approximately 15%, and after a few follow-up rounds of emails, we
reached our goal of at least 20 participants per group. Two participants
were excluded based on a failure to respond correctly on the attention
probes (1 Control and 1 CD) and three participants reported connection
issues and terminated the program (1 Control, 1 CD, and 1 PD). Of those
who completed the study, we excluded the data from two participants
who had accuracy scores at chance level (1 CD and 1 PD). Thus, the
final sample consisted of 20 Control, 17 CD, and 18 PD in male and
female participants. The CD group was composed of 10 participants
with a known genetic subtype and 7 participants with an unknown eti-
ology (idiopathic ataxia). The mean duration since diagnosis for the
CD group was 8.2 years (SE = 2.6). The mean duration since diagnosis
for the PD group was 6.1 years (SE = 1.0). None of the participants in
the PD group had undergone surgical intervention as part of their treat-
ment (e.g., DBS) and all were tested while on their current medication
regimen.

The same recruitment procedure was followed in Experiment 2
with a goal of enlisting a minimum of 20 participants per group.
Thirty-one participants (12 CD, 7 PD, 12 Control) who had partici-
pated in Experiment 1 also completed Experiment 2. One PD partici-
pant was excluded based on a failure to respond correctly on the
attention check, three participants did not complete the study due to
connectivity issues (1 from each group), and two completed the study
but were not included in the analyses due to chance level of perfor-
mance (1 Control and 1 PD). Thus, the final sample consisted of 20
Control, 20 CD, and 17 PD. The CD group included 12 participants
with a known genetic subtype and 8 participants with idiopathic ataxia.
The mean duration since diagnosis for the CD group was 4.2 years
(SE = 1.0). The mean duration since diagnosis for the PD group was
8.1 years (SE = 1.3) and, as in Exp 1, none had undergone surgical inter-
vention as part of their treatment, and all were tested while on their cur-
rent medication regimen.

All participants provided informed consent under a protocol approved
by the institutional review board at the University of California, Berkeley.

Neurological and neuropsychological assessment. Individuals were
invited by email to participate in an online, live interview with an exper-
imenter. After providing informed consent, the participant completed a
demographic questionnaire. The experimenter then administered a
modified version of the Montreal Cognitive Assessment test [MoCA
(Nasreddine et al., 2005)] as a brief evaluation of cognitive status. For
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Control participants, the session ended with the completion of the
MoCA.

The PD and CD participants continued on to the medical evaluation
phase. First, the experimenter obtained the participant's medical history,
asking questions about age at diagnosis, medication and other relevant
information (e.g., DBS for PD; genetic subtype if known for CD), and
a screening for other neurological or psychiatric conditions. Second,
the experimenter administered a modified version of the motor section
of the Unified Parkinson’s Disease Rating Scale, [UPDRS (Martínez‐
Martín et al., 1994)] to the PD participants and the Scale for
Assessment and Rating of Ataxia (SARA (Schmitz-Hübsch et al., 2006)
to the CD participants).

Modifications were made to these assessment instruments to make
them better suited for online testing. For the MoCA test, we eliminated
the “Alternating Trail Making” item since this requires providing the
participant with a paper copy of the task. For the UPDRS and SARA,
we modified items that require the presence of a trained individual to
ensure safe administration. We eliminated the “Postural Stability task”
from the UPDRS since it requires an experimenter to abruptly pull on
the shoulders of the participant. We modified three items on the
UPDRS (“Arising from Chair”, “Posture”, and “Gait”), obtaining self-
reports from the participant rather than the standard evaluation by the
experimenter. Similarly, we obtained self-reports of stance and gait for
the SARA rather than observing the participant on these items. For the
self-reports, we provided the scale options to the participant (e.g., on
the SARA item for gait, 0 = normal/no difficulty and 8 = unable to walk
even supported). The scores for the MoCA and UPDRS batteries were
adjusted to reflect these modifications. For the online MoCA, the
observed score was divided by 29 (the maximum online score), and
then multiplied by 30 (the maximum score on the standard test).
Hence, if a participant obtained a score of 26, the adjusted score will
be (26/29) * 30, or 26.9. The same adjustment procedure was performed
for the UPDRS. No adjustment was required for the SARA.

The interview took around 30 min for the control participants and
40–60 min for the PD and SCA participants. Table 1 provides demo-
graphic information for the three groups, as well as the adjusted
MoCA, SARA (CD), and UPDRS (PD) scores.

Procedure. The experiments were programmed in Gorilla Experiment
Builder (Anwyl-Irvine et al., 2020) and designed to be compatible with any
personal computer. Stimuli were presented as black characters on a white
screen. The actual size in terms of visual angle varied given that participants
used their own computer system, but we chose a font (7 HTML) that is
clearly legible on all screens (as determined by testing when developing
the system).

Participants were invited by email to participate in an experiment.
The email provided an overview of the experimental task and included
a link that could be clicked to initiate the experimental session. The
instructions emphasized that the participant could start the experiment
whenever he or she was ready but should only do so when they could
complete the 30–45 min session. The link was associated with a unique
participant ID, providing a means to ensure that the data were stored
in an anonymized and confidential manner. Once activated, the link con-
nected to the Gorilla platform is used to run the experimental session.

The instructions were provided on the monitor in an automated manner,
with the program advancing under the participant's control.

Each experiment involved an arithmetic verification task (AVT). The
participant was asked to determine whether the mathematical equation
(e.g., 3 + 2 + 6 = 11) presented on the center of the screen was true (press
the “M” key) or false (press the “Z” key). At the start of each trial in the
AVT, a black fixation cross appeared in the middle of a white back-
ground. After 1,000 ms, the fixation cross was replaced by a stimulus dis-
play that consisted of the equation. The equation remained on the screen
until a response was recorded or until 5,000 ms, whichever came first.
The instructions emphasized that the response should be performed as
quickly and accurately as possible. Visual feedback was presented for
500 ms above the equation, with a green checkmark (√) or red X indi-
cating if the response was incorrect or correct. If a keypress was not
detected after 3,500 ms, the participant was presented with the phrase
“Respond faster” as feedback.

Experimental design and statistical analysis. In Experiment 1, we cre-
ated ten different sets of 288 equations. Each individual was randomly
presented with one of the sets. To minimize the effect of memory, each
equation only appeared twice (50% of which were true). For any given
equation, the same digit did not appear twice and only the digits 1–9
were used. In Experiment 1, we examined two procedures involved in
solving arithmetic problems: Complexity and counting. As a manipula-
tion of complexity, the equations could either require adding two
addends (Simple) or three addends (Complex). The sum of the equations
varied from 3 to 17 (e.g., 2 + 1=3 to 9+ 8=17) and served as our proxy for
variation in counting. For each level of complexity, 144 unique equations
were presented. Each participant had three breaks of 1 min each. The equa-
tions were presented in a random order. The experiment was completed
within approximately 25 min.

In Experiment 2, we created ten different sets of 296 equations. Each
participant was randomly presented with one of the sets. The stimulus set
was limited to equations with three addends. For any given equation, the
same digit did not appear twice. Eight of these equations constituted the
Repeated stimuli (the same equation); the others constituted the No
Repetition stimuli. The experiment consisted of a total of 36 blocks of
16 trials each (576 total trials; 50% of which were true). Each block
was composed of one trial with each of the eight Repeat equations and
eight trials with No Repetition (unique) equations. The two types of
equations were included to provide measures of two forms of learning,
memory-based learning (Repetition equations) and algorithm-based
learning (No Repetition equations). We averaged across every three
blocks to collapse the 36 blocks into 12 cycles. The experiment was com-
pleted within approximately 45 min.

To ensure that participants remained attentive, we included five
“attention probes” that appeared in the start phase of the experiment
or during the experimental block. For example, an attention probe might
instruct the participant to press a specific key rather than selecting the
“next” button on the screen to advance the experiment (e.g., “Do not
press the ‘next’ button. Press the letter ‘A’ to continue”). If the participant
failed to respond as instructed on these probes, the experiment contin-
ued, but the participant's results were not included in the analysis.
After completing the experimental task, each participant answered a

Table 1. Demographic and neuropsychological summary of all groups

Years of education No. of females Age MoCA Motor assessment

Experiment 1
Control 17.8 ± 0.5 (14–22) 11 64.2 ± 2.0 (40–78) 27.9 ± 0.4 (25–30)
CD 15.9 ± 0.9 (12–28) 14 61.7 ± 2.6 (40–81) 26.6 ± 0.4 (25–30) 10.1 ± 0.8 (2.0–18.5)
PD 16.5 ± 0.6 (12–20) 9 64.0 ± 1.0 (47–75) 26.5 ± 0.7 (25–30) 19.4 ± 1.6 (11.3–36.6)

Experiment 2
Control 18.3 ± 0.5 (13–22) 7 66.9 ± 1.5 (51–78) 27.7 ± 0.4 (25–30)
CD 16.1 ± 0.9 (12–25) 9 63.0 ± 3.2 (34–81) 26.7 ± 0.4 (25–30) 10.4 ± 1.1 (2.0–19.5)
PD 18.3 ± 0.8 (12–25) 9 67.6 ± 1.9 (49–80) 27.4 ± 0.7 (25–30) 17.1 ± 1 (10.7–26.9)

Mean ± SE and (range) for each demographic and neuropsychological variable. The scores of the MoCA and UPDRS are adjusted for online administration.
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feedback questionnaire about their experience of the study (e.g., “How
well was the study instructions explained.” or “Did all the images display
correctly?”).

Results
Experiment 1
We used manipulations in Experiment 1 to probe two core pro-
cedures for addition. First, under the assumption that performing
addition problems with single digit numbers involves a counting
procedure that references a mental number line (Groen and
Parkman, 1972), the time required to solve the problem will be
related to the spatial distance that has to be traversed on this lin-
ear number line. Second, we manipulated the number of required
steps, employing problems that involved either two or three
operands. Adding up three single-digit numbers will take more
time than adding up two single-digit numbers, presumably
because the former requires chaining together procedures
required for addition.

Figure 1A shows RT as a function of sum and group, with
separate figures provided for the two-addend (simple) and three-
addend (complex) problems. We used a linear mixed-effects
[LME (Bates et al., 2015)] model with the factors Group
(Control/PD/CD), Complexity (complex/simple), and Sum (17-3),
with the participant as a random factor. Years of education,
age, and MoCA score were included as covariates. Collapsing

across conditions, mean RTs were 1,482 ms, 1,585 ms, and
1,829 ms for the Control, PD, and CD groups, respectively. We
log-transformed the RTs to fit the assumptions of the LMEmodel
in both experiments (e.g., the independent variables are related
linearly to the RT and the errors are normally distributed). We
observed that the CD group was significantly slower than the
Control group (estimator (est) = 0.209, SE = 0.055, p < 0.001)
and the PD group (est. = 0.143, SE = 0.056, p= 0.014). The PD
group was numerically slower than the Control group, but this
difference was not significant (est. = 0.066, SE = 0.054, p= 0.229).

Turning to our mathematical variables of interest, RT
increased as a function of both sum and complexity, a pattern
that was observed in all three groups. Considering the Control
group as establishing baseline performance, this group was,
on average, slower to respond to the three-addend problems
compared to the two-addend problems (the “complexity effect”;
est. = 0.381, SE = 0.005, p < 0.001). In terms of the sum effect,
this group showed an increase in RT as the sum increased
(est. = 0.0314, SE = 0.0008, p < 0.001).

Our main focus in Experiment 1 is on the comparison of the
effect of complexity and sum between groups (Fig. 1B). The
complexity effect (three-addends minus two-addends) was
larger for the PD group compared to both the Control group
(est. =−0.0447, SE=0.0074, p<0.001) and the CD group (est. =
−0.0542, SE= 0.0078, p< 0.001). The Control and CD groups did
not differ on this variable (est. =−0.0095, SE=0.0076, p=0.213).

Figure 1. A, RT as a function of sum for two-addend problems (left) and three-addend problems (right). Error bars = 95% confidence interval. B, The left panel shows the effect of complexity,
defined as the difference in mean RT for the three- and two-addend problems. The right panel shows the effect of sum, defined as the slope of the function relating RT to the sum. Note that the
data were log-transformed to fit the assumptions of the LME model. Thus, the values in this figure represent the difference between the conditions in log(RT). Dots indicate the performance of
each individual participant. Error bars = SEM; *p< 0.001.
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In contrast, the sum effect was larger for the CDgroup compared to
both the Control group (est. = 0.0297; SE=0.0038, p<0.001) and
the PD group (est. = 0.0314, SE= 0.0039, p< 0.001). The Control
and PD groups did not differ on this variable (est. =−0.0017,
SE = 0.0037, p= 0.638). In terms of the covariates, there were
no significant effects of education (est. = 0.005, SE = 0.025, p=
0.821), age (est. = 0.020, SE = 0.025, p= 0.440), or MoCA score
(est. =−0.007, SE = 0.026, p= 0.779).

We performed a secondary analysis to determine the number
of individuals within each group that showed a selective impair-
ment in line with the group data. Since our sample size is lower
than 50, a one-sided t-test (Type-I error rate of 5%) was used to
compare each patient's test score against norms derived from the
controls (Crawford and Howell, 1998). Note that for this type of
analysis, using a test statistic with a t-distribution is more conser-
vative compared to a test statistic based on a standard normal
distribution. When looking at the complexity effect, 72.2% of
the PD group (13) and 29.4% of the CD group (5) exhibited an
impairment relative to the controls. When looking at the Sum
effect, 76.4% CD (13) and 38.8% PD (7) were impaired compared
to the controls. Thus, while around three-quarters of the partici-
pants in each patient group exhibit the impairment associated
with their group, there are also cases in which a participant showed
an impairment associated with the other group (e.g., CD on the
complexity effect) or impairments on both tasks (3/group).

To examine the distributional data more formally, we used a
chi-squared test, asking if the proportion of patients identified as
impaired on the non-associated task (e.g., CD on Complexity)
exceeded the expected proportion based on the Control data.
For the Complexity effect, the Control and the CD proportions
were not different (p= 0.51). Similarly, for the Sum effect, the
Control and the PD proportions were not different (p= 0.09).
Regarding a dual deficit, there was no difference between the
Control and each patient group (CD: p= 0.50; PD: p= 0.54).
Thus, these analyses indicate that the proportion of impairment
observed within each group on the non-associated task was not
different from that expected by chance based on the variability
observed within the control participants.

To conclude, two main points can be taken from these results.
First, both patient groups exhibited an impairment in the arith-
metic verification task, providing novel evidence of the contribu-
tion of the cerebellum and basal ganglia to higher cognition.
Second, the results point to a selective impairment of each patient
group in terms of how the cerebellum and basal ganglia contrib-
ute to algorithmic procedures required for symbolic arithmetic.
The CD group showed an impairment in the magnitude manip-
ulation, exhibiting a larger slope for the function relating RT to
the sum of the digits. In contrast, the PD group showed a bigger
cost compared to the other two groups when adding three digits
relative to two digits.

We hypothesize that the selective Sum effect reflects the
involvement of the cerebellum in counting, a procedure that
has been hypothesized to entail mental movement along a num-
ber line (Dehaene, 2003). The added cost incurred by the PD
group for complex problems may reflect the involvement of
the basal ganglia in chaining together a series of operations
(Shohamy et al., 2005) or in facilitating transitions between suc-
cessive operations [i.e., set switching (Meiran et al., 2004)].

Experiment 2
Arithmetic is a practiced skill in most literate adults. Nonetheless,
we expect performance will improve over the course of the
experiment, reflecting the benefits of short-term practice. An

important distinction in the numerical learning literature has
beenmade between benefits that accrue from improved efficiency
in algorithmic procedures and benefits that accrue from memory
processes (Logan, 1988; Rickard, 1997; Tenison et al., 2016).
Prior work has shown that short-term benefits can arise from
improved efficiency in counting (algorithmic learning) and
enhanced memory retrieval (Ashcraft, 1982; Baroody, 1994;
LeFevre et al., 1996; Campbell and Xue, 2001). Although the basal
ganglia and the cerebellum have been associated with procedural
learning in a variety of task domains (47, 65), we are unaware of
any work looking at the contribution of these subcortical struc-
tures to learning in the math domain.

We compared practice benefits for the PD, CD, and controls
on the AVT in Experiment 2. To measure short-term practice
benefits associated with algorithmic andmemory-based learning,
we assessed problems that appeared only a single time
(No-Repetition condition) and those that were repeated multiple
times (Repetition condition). An algorithmic-based impairment
should be manifest as a selective reduction of practice gains for
non-repeated items. In contrast, a memory-based impairment
would be evident as reduced practice gains for both non-repeated
and repeated items.

Figure 2 shows RT as a function of the learning cycle and
group, with separate functions for the Repetition and No
Repetition conditions. In Experiment 2, the LMEmodel included
the factors Group (Control/PD/CD), Repetition Condition
(Repetition/No repetition), and Cycle (1–12), with participant
as a random factor. Years of education, age, and MoCA score
were included as covariates. Collapsing across all conditions,
the mean RTs were 1,953 ms, 2,148 ms, and 2,281 ms for the
Control, PD, and CD groups, respectively, a pattern similar to
that observed in Exp 1. Both patient groups were slower than
the control group although this effect was only significant for the
CD group (CD vs Control: est. = 0.177, SE= 0.059, p=0.004; PD
vs Control: est. = 0.110, SE=0.062, p=0.080). The mean RTs for
CD and PD groups were not significantly different (est. = 0.066,
SE= 0.063, p=0.299).

As expected, the participants got faster at the task over the
course of the experiment, and this improvement was especially
marked in the Repetition condition. Using the control group to
establish baseline performance, this group got faster for repeated
items (est. =−41.4, SE = 2.2, p < 0.0001) and for non-repeated
items (est. =−26.4, SE = 2.2, p < 0.0001). The difference between
these two slopes was significant (est. difference in slope =
−14.9, SE = 3.1, p < 0.0001), consistent with the hypothesis that
performance in the Repetition condition benefits from memory
retrieval.

Turning to our main analysis (Fig. 2B), there was a significant
three-way interaction between Group ×Repetition ×Cycle (CD
vs Control: est. =−0.022, SE = 0.022, p= 0.046; PD vs Control:
est. =−0.003, SE = 0.011, p= 0.766). We compared the learning
effect (slope of the function relating RT to Cycle) between the
groups separately for the Repetition and No Repetition condi-
tions. For the Repetition condition, the three groups showed a
similar change in performance across cycles (CD vs Control:
est. = 0.004, SE = 0.007, p= 0.531; PD vs Control: est. = 0.006,
SE = 0.007, p= 0.419; CD vs PD: est. =−0.001, SE = 0.008,
p= 0.839). However, for the No Repetition condition, the CD
group showed less improvement over cycles than the Control
group (est. = 0.023, SE = 0.007, p= 0.002) and the PD group
(est. = 0.016, SE = 0.008, p= 0.047). The comparison between
the Control and PD groups was not significant (est. = 0.006,
SE = 0.008, p= 0.425). Neither education (est. = 0.009, SE =
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0.023, p= 0.670), age (est. = 0.005, SE = 0.023, p= 0.815), or
MoCA score (est. =−0.015, SE = 0.024, p= 0.521) were signifi-
cant when entered as covariates in the model.

In summary, the results of Experiment 2 show dissociable
benefits from different forms of learning. Participants exhibited
a large decrease in RT on the equations that repeated multiple
times, an effect we assume is driven by the availability of item-
specific memory-based retrieval. Given that the magnitude of
this effect was similar in all three groups, we assume that the basal
ganglia and cerebellum are not essential for the processes
required to encode and retrieve the equations. In contrast, the
CD group showed a reduced practice benefit in evaluating the
novel equations, a signature of what we interpret as an indication
of an impairment in algorithm-based learning. Given the results
of Experiment 1, this selective impairment may be related to the
counting procedure, here manifest as a problem in becoming
more facile in counting over the course of the experimental
session.

We performed an exploratory analysis limited to the individ-
uals who participated in both experiments. Here we asked if there
was a correlation between the Sum effect in Experiment 1 and the
practice benefit in the No Repetition condition in Experiment 2,
the two measures we have used to assess counting processes.
None of the correlations were significantly different from zero
(CD: r=0.29, p=0.18, Control: r=−0.10, p=0.37, and PD: r=
−0.19, p=0.34). This may indicate that the two measures probe
different aspects of counting; for example, the sum measure might

reflect the application of an algorithmwhereas the practicemeasure
might reflect the short term benefit in deploying the algorithm.
However, we also recognize that this analysis is limited given that
the sample size for each group is low (12 CD, 7 PD, 12 Controls)
and the absence of test-retest measures to establish the reliability
of the twomeasures, a prerequisite for establishing an upper bound
on the correlations.

Discussion
Converging evidence has highlighted the involvement of the
basal ganglia and cerebellum in a broad range of cognitive
domains including cognitive control, decision making, and lan-
guage (Middleton and Strick, 2000; Buckner, 2013; Anon, 2016;
Bostan and Strick, 2018; King et al., 2019; Schmahmann, 2019).
In the present study, we examined the involvement of these sub-
cortical structures in mathematical cognition, a domain in which
current models focus on a frontal-parietal cortical network
(Arsalidou and Taylor, 2011; Arsalidou et al., 2018). Taking a
neuropsychological approach, we tested patients with
Parkinson's disease (PD) and cerebellar degeneration (CD) on
mental addition tasks, using these groups as models to evaluate
the role of the basal ganglia and cerebellum, respectively.

The results of Experiment 1 revealed a selective impairment
for each patient group. Relative to both the Control and PD
groups, the CD group showed a larger slope for the function
relating RT to the sum of the digits (i.e., problem size effect).

Figure 2. A, RT as a function of learning cycle for the Repetition and No Repetition conditions. Error bars = 95% confidence interval. B, Rate of improvement across cycles for each group for
the No Repetition (left) and Repetition (right) conditions. Dots indicate performance of each individual participant. Error bars = SEM; *p< 0.001.
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In contrast, the PD group showed a larger cost relative to the
other two groups when evaluating problems with three addends
relative to two addends. These results not only implicate the basal
ganglia and cerebellum in mathematical cognition but also point
to distinct computational contributions. In Experiment 2, we
used a learning design that allowed us to examine item-specific
and item-general practice benefits. Both patient groups showed
a similar practice benefit as the Control group on repeated equa-
tions. Coupled with the results of Experiment 1, this null finding
argues against the hypothesis that the patients’ impairments
might be fully explained by a deficit in memory processes.
Interestingly, the CD group showed an attenuated practice
effect when tested with non-repeated novel equations. This
pattern of results underscores a selective contribution of the cer-
ebellum to algorithm-based learning.

Addition problems involving single digits can be solved by
memory retrieval or/and by counting procedures (Groen and
Parkman, 1972; Ashcraft, 1982; Butterworth, 2005; Ashcraft
and Guillaume, 2009; Barrouillet and Thevenot, 2013; Cohen-
Kadosh and Dowker, 2015; Chen and Campbell, 2018;
Grotheer et al., 2018). From a memory perspective, the problem
size effect may appear because we have more experience with
small-size problems (e.g., 3 + 2) compared to large-size problems
(e.g., 3 + 8). From a counting perspective, the problem size effect
arises from a process that references a mental number line; thus,
adding eight will take more time than adding two because of the
additional iterations required by the former. In one variant of this
model, these iterations are conceptualized as mental movement
along a spatialized number line (Dehaene, 2003). Recently, it
was found that participants with CD show a larger problem
size effect on addition problems, but not multiplication problems
(McDougle et al., 2022). This previous result points to a role of
the cerebellum in a counting-like procedure, given that a retrieval
problem should impact both types of procedures. The results
from Experiment 1 are consistent with this hypothesis and points
to some degree of neural specificity in that the PD group did not
show a similar problem size effect.

The results from Experiment 2 can also be interpreted as evi-
dence of a counting deficit associated with cerebellar degenera-
tion. With repeated items, the demands on counting can be
reduced since the answer can be obtained by reference to recently
activated memories (Logan, 1988). The fact that the CD group
showed comparable practice gains for repeated items as the
Control and PD groups suggests that this type of memory is
intact. However, as suggested by the results of Experiment 1,
non-repeated items require more specific mathematical proce-
dures including counting. As such, the CD impairment would
continue to be manifest. Moreover, the reduced rate of learning
found in Experiment 2 suggests that some of the improvement
exhibited by the Control and PD groups for non-repeated items
reflects short-term benefits in the rate of counting. We recognize
the inferential reasoning underlying this argument. Future exper-
iments could directly examine how different arithmetic proce-
dures (i.e., counting, carrying, number of steps) change over
the course of learning.

To this point, we have focused on the hypothesis that the
problem size effect may be reflective of a counting-like proce-
dure. However, one should note that the problem size effect
may also arise from a different mathematical procedure, carrying:
Problems with larger sums are more likely to require a carry pro-
cedure (e.g., 6 + 7) than problems with smaller sums (e.g., 3 + 4).
One way to assess the carry procedure effect is to compare equa-
tions that either require carrying or not, that are matched in

terms of the lower addend (e.g., 5 + 3 vs 8 + 3) given that people
tend to increment from the larger digit (Barrouillet and
Thevenot, 2013). Although the sample is limited, for equations
matched in this manner, we did observe longer RTs for equations
in which the sum was greater than 10. However, we also observed
a significant positive slope in RT if we only consider the set of
equations that summed to higher than 10. The latter result
underscores that the problem size effect is not solely due to
carrying. It would be interesting in future experiments to create
balanced stimulus sets to have sufficient power to independently
examine the effect of cerebellar damage on carrying and counting.

As noted above, the PD group showed a different pattern of
performance than the CD group. Their problem size effect was
comparable to that observed for the Control Group. However,
relative to both of the other groups, the PD group exhibited a
larger cost in adding three single-digit numbers compared to
adding two single-digit numbers. While we referred to this
manipulation as one of complexity, the two- and three-addend
problems involve the same procedures; where they differ is that
the latter require additional steps (e.g., add two numbers and
that sum becomes an addend to go with the third number).
Models of basal ganglia function have highlighted the involve-
ment of this structure in executive functions, including working
memory (Zamarian et al., 2006), chaining a series of operations
(Shohamy et al., 2005), or facilitating the transition between
successive procedures [i.e., set switching (Meiran et al.,
2004)]. The larger complexity effect observed in the PD group
would be consistent with these computations: Three-addend
problems are likely more taxing on working memory, as well
as require performing a longer series of procedures. Future
work can use tasks that hone in on different computations; at
present, it is intriguing to consider that the impairment
observed in the math domain may be indicative of a domain-
independent impairment.

Despite the inflated complexity effect observed in the PD
group, these participants showed similar practice benefits as
the Controls for both repeated and non-repeated items in
Experiment 2. This intact rate of learning suggests that the
improvement exhibited by the Control group for non-repeated
items is unlikely to be due to short-term benefits in procedures
underlying the complexity effect (working memory, chaining,
task switching). However, this hypothesis needs to be viewed
with caution since it rests on a null result, the absence of a prac-
tice deficit in the PD group. Future experiments should directly
examine how subcortical (and cortical) contributions to different
arithmetic procedures (i.e., counting, carrying, complexity)
change over the course of learning.

Models of the brain networks supporting mathematical cog-
nition have focused mainly on the cerebral cortex, and in partic-
ular, the frontoparietal network. The present results point to the
need for a broader conceptualization, one that incorporates the
basal ganglia and cerebellum. We note that we have only looked
on one elementary feature of numerical fluency, the addition of
single-digit numbers. A more comprehensive picture will require
experiments that examine subcortical contributions to a broad
range of mathematical procedures (e.g., subtraction, multiplica-
tion, geometric relations). The selective impairment of each
patient group in counting and complexity gives reason to expect
that this line of research will help reveal how the basal ganglia and
cerebellum work in concert with the cortex to support mathe-
matical cognition.

We recognize that we have treated the basal ganglia and cer-
ebellum as unitary structures, whereas there is evidence
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demonstrating functional specialization within each of these sub-
cortical structures. While a more detailed analysis of anatomical-
behavioral relationships would be useful in understanding how
these subcortical regions contribute to cognition, we were unable
to acquire sufficient MRI records for the patient groups. Given
that our sample was distributed over a large geographic area
and the data were collected during the pandemic, we were not
in a position to obtain MRIs for the participants. Nonetheless,
future work should use lesion analysis or neuroimaging methods
to examine regions within the cerebellum and basal ganglia that
are critical for arithmetic operations.

Considered more broadly, the present results provide a novel
causal demonstration of how subcortical systems contribute to
higher-level cognition (Anon, 2016; Saban et al., 2017, 2018a,b,
2019, 2021).We assume that the computations provided by the cer-
ebellum and basal ganglia for math initially evolved to support
more elementary functions, functions that might be performed in
the absence of a developed cortex (Güntürkün and Bugnyar,
2016; Saban and Gabay, 2023). Coupling these subcortical systems
with the expanded representational capacity of the cortex allows for
the emergence of complex cognitive representations such as arith-
metic. As Paul Rozin has noted, a process that evolved to solve a
specific problem may come to be exploited across a broad range
of task domains (Rozin, 1976). In this manner, the functional
domain of subcortical regions has expanded, evolving in parallel
with the cortex to create novel cognitive competences.

Conclusion
Very little is known about the neuro-evolutionary development
of numerical abilities. To date, the literature has emphasized
the role of cortical regions in arithmetic abilities. A central ques-
tion addressed by the present study is whether ancient subcorti-
cal neural mechanisms are involved in humans’ arithmetic
abilities. Divergent patterns of impairment were observed in par-
ticipants with either degeneration of the basal ganglia or cerebel-
lum on an arithmetic task. These results highlight that these
subcortical structures make distinct computational contributions
to symbolic arithmetic procedures. Taken together, these results
provide compelling support for the constraints on the computa-
tional role of two major subcortical regions in higher cognition
(Saban and Gabay, 2023).
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