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Why does unilateral deep brain stimulation improve motor function bilaterally? To address this clinical observation, we collected
parallel neural recordings from sensorimotor cortex (SMC) and the subthalamic nucleus (STN) during repetitive ipsilateral, contralateral,
and bilateral hand movements in patients with Parkinson’s disease. We used a cross-validated electrode-wise encoding model to map
electromyography data to the neural signals. Electrodes in the STN encoded movement at a comparable level for both hands, whereas
SMC electrodes displayed a strong contralateral bias. To examine representational overlap across the two hands, we trained the model
with data from one condition (contralateral hand) and used the trained weights to predict neural activity for movements produced
with the other hand (ipsilateral hand). Overall, between-hand generalization was poor, and this limitation was evident in both regions.
A similar method was used to probe representational overlap across different task contexts (unimanual vs. bimanual). Task context
was more important for the STN compared to the SMC indicating that neural activity in the STN showed greater divergence between
the unimanual and bimanual conditions. These results indicate that SMC activity is strongly lateralized and relatively context-free,
whereas the STN integrates contextual information with the ongoing behavior.
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Introduction
The basal ganglia and frontal lobe are key nodes in the network
supporting voluntary limb movements (Alexander et al. 1986;
DeLong 1990). Somatomotor regions in the basal ganglia receive
inputs from several areas of the cerebral cortex including pri-
mary motor cortex (M1), supplementary motor area (SMA), and
premotor cortex (PM; Alexander and Crutcher 1990). Following
processing in basal ganglia, movement information returns to
these cortical regions via the thalamus (Parent and Hazrati 1995;
Middleton and Strick 2000). In patients with Parkinson’s disease
(PD), cell death in the substantia nigra disrupts the cortico-basal
ganglia motor loop leading to symptoms such as tremor, rigidity,
and bradykinesia (Dauer and Przedborski 2003). Deep brain stim-
ulation (DBS) of the subthalamic nucleus (STN) or globus pallidus
(GP) has not only revolutionized treatment for patients with PD,
but has also provided a tool for scientists to further understand
PD pathophysiology and basic motor control (Kumar et al. 1998).

Functionally, the basal ganglia have traditionally been impli-
cated in inhibiting or modifying motor plans, processes especially
relevant during motor planning and initiation (Mink 1996). More
recent work has highlighted potential contributions to the control
of on-going movements (Yttri and Dudman 2016). In PD patients,
STN single unit activity is associated with upper limb movements

(Rodriguez-Oroz et al. 2001; Abosch et al. 2002) and STN single
unit activity and local field potentials (LFPs) can decode grip force
(Patil et al. 2004; Tan et al. 2016).

Most physiology literature has focused on the contralateral
arm relative to the DBS lead. However, various lines of evidence
suggest that the STN are engaged during movement with either
limb. Bilateral changes in STN oscillatory activity occur dur-
ing unimanual movements of either hand (Alegre et al. 2005).
In addition, phase coherence between the left and right STN
increases in the alpha range during unimanual movements, indi-
cating physiological connections between bilateral STN, despite
the absence of monosynaptic anatomical connections (Darvas
and Hebb 2014). Perhaps most striking, unilateral implantation
of STN DBS improves motor function in both limbs, although the
contralateral benefits are larger (Tabbal et al. 2008; Walker et al.
2009).

Here we examine how continuous contralateral and ipsilateral
hand movements are encoded in the motor region of the STN and
the sensorimotor cortex (SMC). Electrophysiological data were
collected during DBS implant surgery from 13 patients, each
with a directional DBS lead and an ipsilateral electrocorticogra-
phy (ECoG) strip over SMC. The participants produced repetitive
voluntary movements with either the ipsilateral or contralateral
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hand, or with both hands. Our primary goal was to compare hand
(contralateral vs ipsilateral) and context (unimanual vs bimanual)
encoding in the STN and SMC. We opted to use an encoding
model (Fig. 1) rather than a decoding model. For the former, the
model predicts brain activity from movement, whereas the latter
follows the reverse process, seeking to predict movement patterns
from brain activity (Kriegeskorte and Douglas 2019). Although
decoding models offer a rich method to ascertain if information
within a particular brain region relates to movement parameters,
the encoding approach allows us to compare how movement is
represented in the STN and SMC. Specifically, we use continuous
EMG signals to predict the local motor potential (LMP) recorded
with contacts on the implanted DBS lead and from the surface of
the SMC. These parallel recordings provide us the opportunity to
compare movement encoding between the two areas, testing for
the generalizability of neural patterns across different movement
contexts.

Materials and methods
Patients
Intracranial recordings were collected from 13 patients (4 women;
59.27 years old). Patients were recruited from University of
Alabama at Birmingham (UAB) medical center and represent a
subset of participants in a randomized, double-blind crossover
study of directional versus circular STN DBS for moderately
advanced PD (SUNDIAL trial, clinicaltrial.org: NCT03353688).
Inclusion/exclusion criteria for recruitment, screening, enroll-
ment, and DBS surgery were followed strictly. All research
procedures were approved by the institutional review boards at
UAB, and all patients provided informed consent prior to study
participation.

ECoG strip and DBS lead placement
All surgeries were conducted with the patients awake and “off”
dopaminergic medications. Before surgery, pre-op 3 T PRISMA
brain MR images were co-registered with the intra-op O-arm 2
CT images, and standard frame-based stereotaxy was used to
target the STN. A temporary 6 contact Ad-Tech ECoG strip was
passed over the “hand knob” of ipsilateral SMC, in the manner
pioneered by Starr (Crowell et al. 2012; de Hemptinne et al.
2013; de Hemptinne et al. 2015). We used multi-pass single unit
microelectrode recordings, macrostimulation, and intraoperative
O-arm 2 CT image to select an appropriate trajectory for the per-
manent location of the DBS lead. The Boston Scientific Cartesia™
directional lead consists of four rows of electrodes in a 1-3-3-1
configuration, with ring-shaped contacts at the top and bottom
rows and two segmented rings with three directional contact
segments in each of the middle rows. The leads were positioned
at a defined electrophysiological depth, such that the middle
directional rows are equidistant from the dorsal STN border based
upon the single unit recording profile within that trajectory. Thus,
the upper directional row (contacts 5, 6, and 7) is just dorsal to
STN in zona incerta/anterior thalamus, and the lower directional
row (contacts 2, 3, and 4) is within the dorsolateral sensorimotor
STN.

Behavioral tasks
A standardized battery of motor behaviors was employed intra-
operatively. This included simple, repetitive opening and closing
hand movements, variants of Item 3.6 of the Unified Parkinson’s

Disease Rating scale. These movements require voluntary flexion-
extension at the metacarpophalangeal and proximal interpha-
langeal joints. There were three movement conditions: contralat-
eral, ipsilateral, and bimanual movements. For the bimanual
condition patients were instructed to move both hands simul-
taneously, alternating opening/closing movements between the
two hands, such that, when one hand was in extension mode,
the other was in flexion. One participant (P09) was excluded from
the bimanual condition because they tended to synchronize the
movements of the two hands, making it difficult to differentiate
the ipsilateral and contralateral contributions. Each condition was
performed for 10 s with the order fixed (contralateral, ipsilateral,
bimanual) and a 5–20 s break between blocks. At the start of each
block, the verbal instructions “ready, set, go” were provided and
the participant was instructed to continue the movement until
hearing the word “stop.” An examiner synchronized TTL button
presses with each verbal command to mark events in time. All
patients completed at least two blocks of each condition.

Data acquisition and preprocessing
Electrophysiological signals were recorded from a BrainVision
ActiChamp acquisition system and sampled at 25 kHz without
digital filters. We simultaneously recorded LFPs from both the
DBS probe and the six ECoG contacts over primary SMC. Surface
electromyography (EMG) signals were recorded from the hands or
arms (bilateral first dorsal interosseous muscle, bilateral flexor
carpi radialis muscle, or both).

Digital pre-processing
The neural data were low-pass filtered at 500 Hz with a fourth-
order Butterworth anti-aliasing filter before down-sampling to
1000 Hz. The data were then high-pass filtered at 0.5 Hz with a
third-order Butterworth filter to remove slow drifts in the signal.
We re-referenced the signal from each electrode using a common
average reference montage within each neural area (i.e. SMC and
STN region separately). Electrodes were notch-filtered at 60, 120,
and 180 Hz to remove line noise from electronic devices powered
by outlets in the operating room. The neural signals were low-
pass filtered at 10 Hz to extract LMPs. The LMP was selected
as the primary neural signal because it is consistently a top
neural feature for kinematic decoding, displays cosine tuning for
movement direction and was a robust signal in both STN and SMC
recordings (Schalk et al. 2007; Flint et al. 2013; Gunduz et al. 2016).

Similar to the neural data, EMG signals were low-pass filtered
at 500 Hz as an anti-aliasing measure before down-sampling
to 1000 Hz. Each EMG channel was z-scored, high-pass filtered
at 50 Hz, and full-wave rectified (Flint et al. 2012). The EMG
data were then low-pass filtered at 10 Hz to render an envelope
of movement-related activity. All filters were fourth-order, non-
causal Butterworth filters. The EMG data were visually inspected
and portions with excessive noise were excluded from further
analyses. Blocks that had evidence of movement in the other hand
(e.g. contralateral movement during an ipsilateral block) were
excluded from the unimanual condition.

Encoding model
The feature matrix used to predict the neural signal for each
electrode consisted of the time-lagged, preprocessed EMG sig-
nal from a single hand. Time lags in the matrix extend from
500 ms before movement onset to 500 ms after movement onset(
X =

[−→x 1 • • • −→x 1000

]
.This time range allows compensation for

anticipated asynchronies between neural activity and movement,
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Fig. 1. Electrode-wise encoding model. Ridge regression was used to predict neural activity in individual electrodes from continuous EMG activity.
A) Cross-validation. Nested 5-fold cross-validation was used to select the regularization hyperparameter (λ) on inner validation sets. B) Prediction
performance. The held-out EMG feature matrix was multiplied with the trained weights to create model predictions.

including preparatory neural activity. LMP at each time point,−→y [i], was modeled as a weighted linear combination of the EMG at
different time-lags, resulting in a set of regression coefficients, β̂1

. . . , β̂1000, each corresponding to a time lag. To make the regression
coefficients scale-free, the EMG features were z-scored before
model fitting.

Model fitting
Regularized (ridge) regression (Hoerl and Kennard 1970) estimated
weights to map EMG signals to the corresponding LMPs for each
intracranial electrode.

β̂ = (
XTX + λ I

)−1
XT−→y

Equation 1. Ridge regression. Regression coefficients (β̂) cor-
responding to each time lag were calculated using the feature
matrix of time-lagged EMG data (X) for the LMP signal from each
electrode (−→y ). The regularization hyperparameter (λ) was selected
based on the inner (validation) test sets. The resulting regression
coefficients serve as weights to recombine the time-lagged EMG
time series to produce a predicted LMP signal.

For within-arm model fitting, the total dataset consisted of
all clean, successful movements performed with either the ipsi-
lateral, contralateral, or bilateral hands (each condition was fit
separately). At the outer level, the data were partitioned into five
mutually exclusive estimation and test sets. For each test set,
the rest of the data acted as the estimation set. For each outer

fold, we further partitioned our estimation set into five mutually
exclusive inner folds to train the model (80% of estimation set)
and predict neural responses across a range of regularization
values on the validation set (20% of estimation set). For each
inner fold, we tested 20 regularization hyperparameters (λ) evenly
spaced on a log scale from 0 to 8, and selected the regularization
hyperparameter that provided the best prediction. The averages of
the selected regularization parameters and the regression coef-
ficients across the five inner folds were computed to calculate
the predicted LMP on the outer test set. This procedure was
performed five times at the outer level. Our primary measure is
held-out prediction performance (R2), quantified as the squared
linear correlation between the model prediction and the actual
LMP time series, averaged across the five mutually exclusive test
sets.

Electrodes were considered predictive (i.e. encoded muscle
activity) if they could account for at least 1% of the neural
variance (r > 0.10; R2 > 0.01, see Downey et al. 2020) in the held-
out test sets. This criterion was applied separately on predictions
derived from contralateral or ipsilateral EMG records. We decided
to base our criterion on effect size (R2) instead of statistical
significance as it is less affected by sample size (which is large
when dealing with time series data).

For model fitting across hands, we used the same procedure
except that the test set was partitioned from the dataset of the
opposite hand (Fig. 2A). For model fitting across tasks, we used the
same procedure with the test set partitioned from the bimanual
condition (Fig. 2B). We partitioned the data in this manner (80%
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Fig. 2. Generalized encoding model configurations. A) Across hand model. To quantify between-hand generalization, we fit the model with data from
the unimanual contralateral condition and used the trained weights to predict neural activity during the unimanual ipsilateral condition. B) Across
context model. To quantify generalization across contexts we fit the model with data from the unimanual contralateral condition and used the trained
weights to predict neural activity during the bimanual condition.

estimation, 20% test) such that fitting procedures for the across
hand and across task models were comparable to the within hand
models.

Results
Predictive electrodes across brain regions
To examine the extent of movement encoding in individual elec-
trodes over SMC and STN, we fit an encoding model to map con-
tinuous EMG activity to the LMP signals for 182 electrodes across
all patients (n = 13; SMC contacts = 78 and STN contacts = 104).
This procedure was performed separately for the two Hand con-
ditions (ipsilateral and contralateral) and two Task conditions
(unimanual and bimanual) using time-lagged EMG as features in
the model. We calculated prediction performance as the square of
the linear correlation (R2) between the predicted and actual LMP
signal, using held-out data from the test set.

Figure 3 summarizes the percentage of predictive electrodes in
SMC and STN during either unimanual or bimanual movement.
There was a significant difference in the category assignment
for the two regions during unimanual movement (χ2 = 21.49,
P < 0.001). This result is primarily driven by the contralateral only

and ipsilateral only conditions (Contributions to the χ2 value:
SMCcontra = 6.39, STNcontra = 4.80, SMCipsi = 4.95, STNipsi = 3.71,
SMCboth = 0, STNboth = 0, SMCnone = 0.93, STNnone = 0.70; Sharpe
2015). Specifically, electrodes in the SMC were more likely to be
predictive of contralateral movement whereas electrodes in the
STN were predictive of contralateral and ipsilateral movement to
a similar extent.

A similar analysis revealed a significant difference between
STN and SMC in the bimanual condition (χ2 = 18.83, P < 0.001).
The category with the largest contribution is None, indicating that
more electrodes were predictive when both hands are moving in
the SMC compared to the STN (Contributions to the χ2 value:
SMCcontra = 0.29, STNcontra = 0.22, SMCipsi = 0.67, STNipsi = 0.50,
SMCboth = 1.34, STNboth = 1.00, SMCnone = 8.47, STNnone = 6.35).

Unimanual prediction performance
Focusing only on the predictive electrodes (excluding electrodes
that were categorized as “None” in the prior analysis), we next
compare the degree of encoding for contralateral and ipsilateral
movement. Figure 4A compares the predictive performance of
each electrode during unimanual movement, with the Y-axis
plotting contralateral performance and X-axis plotting ipsilateral
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Fig. 3. Summary of predictive electrodes across conditions and brain regions. Each electrode was assigned to one of four categories based on predictive
performance (R2 > 0.01): Contralateral only; ipsilateral only; both; or none. During unimanual movement (top row), SMC electrodes are more likely to
be predictive of contralateral movement whereas STN electrodes are equally predictive of contralateral and ipsilateral movement. Comparing across
brain regions during bimanual movements (bottom row), significantly more electrodes were classified as none in the STN region compared to SMC.

performance. Values close to the unity line indicate a similar level
of prediction performance for each hand; values off the unity
line indicate that encoding is stronger for one hand compared
to the other. A permutation-based mixed effects model with
fixed factors of hand, brain region and a random effect of patient
revealed a significant main effect of hand (μcontra = 0.070, μipsi =
0.036, χ2 = 16.960, P < 0.001), no effect of brain region (μSMC = 0.056,
μSTN = 0.050, χ2 = 0.517, P > 0.60), and a significant hand × brain
region interaction (χ2 = 27.221, P < 0.001). The interaction arises
from the observation that SMC electrodes more strongly encode
contralateral movement relative to ipsilateral movement (μcontra

= 0.096, μipsi = 0.017, χ2 = 37.559, P < 0.001), whereas this bias was
not found for the STN electrodes (μcontra = 0.048, μipsi = 0.052, χ2

= 0.139, P > 0.70). Although overall prediction performance did
not differ between the two hands for STN electrodes, very few
electrodes fell near the unity line, with most electrodes having
stronger encoding for either the contralateral or the ipsilateral
hand.

We next compare prediction performance across the two brain
regions for each hand given that we had a significant hand
× brain region interaction. Although we did not find a main
effect of brain region, simple effects show that SMC electrodes
performed better than STN electrodes during contralateral
movement (μSMC = 0.096, μSTN = 0.048, χ2 = 15.133 P < 0.001),
whereas STN electrodes performed better than SMC electrodes
during ipsilateral movement (μSMC = 0.017, μSTN = 0.052, χ2 =
20.751 P < 0.001).

Bimanual prediction performance
We next examined if differential contralateral and ipsilateral
encoding in SMC and STN is also observed during bimanual
movements. Figure 5A compares the predictive performance of
each electrode during bimanual movement when the prediction
was based on the EMG features from either the contralateral (Y-
axis) or ipsilateral (X-axis) hand. There was a significant main
effect of Hand (μcontra = 0.077, μipsi = 0.041, χ2 = 13.356, P < 0.001),
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Fig. 4. Stronger bilateral encoding in the STN region compared to SMC during unimanual movements. A) Unimanual prediction performance.
Performance of all predictive electrodes, measured as the square of the Pearson correlation (R2), using EMG from either the contralateral (Y-axis) or
ipsilateral (X-axis) hand during unimanual movements. Overall performance did not vary by brain region, but a significant interaction was found with
electrodes in the STN region performing equally well for both hands whereas the SMC displayed a strong contralateral bias. Data are averaged prediction
performance from the five held-out test sets. Upper right corner: Difference distribution for each brain region. B) Example traces. Held-out predictions
of the LMP time series for one test set of E1 and E2 during unimanual movements.

Brain Region (μSMC = 0.075, μSTN = 0.046, χ2 = 7.781, P < 0.05), and
interaction of these factors (χ2 = 8.899, P < 0.01). The interaction
was similar to that observed in the unimanual analysis: Electrodes
over SMC encoded contralateral movement more strongly than
ipsilateral movement (μcontra = 0.108, μipsi = 0.042, χ2 = 21.359,
P < 0.001) whereas electrodes in the STN showed similar encoding
for contralateral and ipsilateral movement (μcontra = 0.051, μipsi

= 0.040, χ2 = 1.103 P > 0.30). In comparison to the unimanual
condition (Fig. 4A, STN region), in the bimanual condition (Fig. 5A,
STN region) more electrodes fell near the unity line suggesting
these electrodes encode both hands to a similar degree. The main
effect of Brain Region in the bimanual condition arose because
predictive performance was higher in the SMC compared to the
STN in the bimanual condition, a result that we did not observe
in the unimanual condition.

To statistically compare predictive performance between the
unimanual and bimanual conditions, we fit a permutation-based
mixed effects model with three factors, Hand, Brain Region, and
Task, along with the random effect of Patient. The two-way

interactions involving the new factor Task were not significant
(Task X Hand: χ2 = 0.012 P > 0.90; Task X Brain Region: χ2 = 3.162
P > 0.10), but there was a significant three-way interaction (χ2 =
36.470 P < 0.001). Analyzing simple effects, ipsilateral encoding
increased during bimanual movement in SMC (μuni = 0.017, μboth

= 0.042, χ2 = 8.526 P < 0.001; rightward shift of SMC data points
in Fig. 5A relative to Fig. 4A), but remained approximately the
same in the STN (μuni = 0.051, μboth = 0.041, χ2 = 0.518 P > 0.40).
Contralateral encoding did not change across task condition in
either region (all χ2’s < 0.751 P’s > 0.40). Thus, ipsilateral encoding
increased in SMC but not STN when both hands were moving,
although it remained weaker overall in SMC.

Across hand generalization
The preceding analyses focused on within-hand predictions, with
the predictions being generated using held-out data from the
same condition used to derive the model. To examine the degree
of overlap in the neural code for contralateral and ipsilateral
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Fig. 5. Stronger bilateral encoding in the STN region compared to SMC during bimanual movements. A) Bimanual prediction performance. Performance
of all predictive electrodes, measured as the square of the Pearson correlation (R2), using EMG from either the contralateral (Y-axis) or ipsilateral (X-axis)
hand when both hands were moving. A significant interaction was found between hand and brain region with electrodes in the STN region performing
equally well for both hands whereas a strong contralateral bias was found in SMC. Data are averaged prediction performance from the five held-out test
sets. Upper right corner: Difference distribution for each brain region. Insets: Time-locked average of LMP for contralateral and ipsilateral hand opening
for E1 and E2. B) Example traces. Held-out predictions of the LMP time series for one test set of E1 and E2 when both hands were moving.

movements, we examined across hand prediction performance.
To this end, we trained the encoding model with the EMG data
from one hand and used the trained weights to create predictions
for the EMG data from the other hand. Figure 6A shows the per-
cent change from within hand predictions to across hand predic-
tions for all electrodes. Values close to zero indicate good across
hand generalization; large negative values indicate poor across
hand generalization. We found poor across hand generalization
for both brain regions shown by the large decrement in prediction
performance (μSMC = −91%, μSTN = −86%). Using a permutation-
based mixed effects model with a fixed factor of Brain Region
and a random effect of Patient, we found no difference in hand
generalization (quantified as percent change) between the SMC
and the STN (χ2= 1.54 P > 0.20).

Figure 6B shows the predictive performance of each electrode
when the model was trained and tested on the same hand (train
contralateral, test contralateral; Y-axis) versus across hands
(train contralateral, test ipsilateral; X-axis). Values close to the
unity line have a neural code that is more overlapping during

contra- and ipsilateral movement, whereas electrodes off the
unity line encode the two hands differentially. Figure 6C shows
within and across hand predictions for one electrode in SMC and
one electrode in STN.

Context generalization
We next examined context generalizability, asking if encoding
changes between the unimanual and bimanual conditions. To
this end we trained the encoding model with the EMG data from
the contralateral hand in the unimanual condition and used
those weights to predict neural activity during movements in the
bimanual condition (Fig. 7).

Figure 7A shows the percent change for each electrode from
within context predictions to across context predictions. Values
close to zero indicate good across context generalization; large
negative values indicate poor across context generalization.

To assess context generalization, we fit a permutation based
mixed effects model with a fixed factor of Brain Region and a
random effect of Patient. Across task generalization was greater
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Fig. 6. Poor across hand generalization in SMC and STN. A) Hand generalization. Percent change from within hand R2 to across hand R2 was calculated for
each electrode for SMC (left) and STN (right). No difference in hand generalization was found between the two brain regions. B) Across hand performance.
Performance of all predictive electrodes, measured as the square of the Pearson correlation (R2), using EMG from either the same hand (Y-axis) or training
and testing across hands (X-axis) during unimanual movements. Data are averaged prediction performance from the five held-out test sets. Upper right
corner: Difference distribution for each brain region. Insets: Time-locked average of LMP for contralateral and ipsilateral hand opening for two electrodes
(E1 and E2). C) Example traces. Held-out predictions of the LMP time series for one test set of E1 and E2, the first being within hand and the second being
across hand predictions.

in the SMC compared to the STN (μSMC = −35%, μSTN = −68%, χ2=
10.10 P < 0.005), indicating that the STN is more sensitive to con-
text. Specifically, in the STN we saw a larger decrement in across
task generalization; thus, the temporal profile of contralateral
neural activity differs for contralateral movement produced alone
(unilateral) or concurrently with ipsilateral movement (biman-
ual). In contrast, the profile of contralateral neural activity in
SMC remained more similar across unimanual and bimanual
conditions. Figure 7B shows the predictive performance of each
electrode when the model was trained and tested within the same
condition (train unimanual contra, test unimanual contra; Y-axis)
or across conditions (train unimanual contra, test both hands
contra; X-axis).

Discussion
Most DBS studies examine physiological and outcome measures
focused on the contralateral arm relative to the implanted lead.
Yet bilateral changes in STN oscillatory activity are observed
during unimanual movement and unilateral implantation of STN
DBS improves motor function in both limbs (Alegre et al. 2005;
Tabbal et al. 2008; Walker et al. 2009). Motivated by these obser-
vations, we collected electrophysiological data in the STN and
the SMC during contralateral and ipsilateral movement. We fit an

encoding model to map continuous EMG activity to neural activity
and examined the extent of movement encoding in STN and SMC.
In addition to the standard within-condition analyses, we also
asked how well the encoding model could generalize across hands
and across context.

We observed differential encoding patterns in the STN and
SMC during unimanual and bimanual movements. There was a
strong contralateral bias in the SMC, whereas in the STN both
hands were encoded equally well. The result that contralateral
and ipsilateral movements were encoded in the STN to a similar
extent may provide some insight into the clinical observation that
unilateral DBS can improve motor function bilaterally. Since the
STN appears to be less lateralized, stimulation may improve func-
tion not only for contralateral movements but also for ipsilateral
movements.

In both brain regions, we found little generalization across
hands, suggesting that the temporal pattern of activation dif-
fers for contralateral and ipsilateral movements. This result sug-
gests that although the STN is encoding both hands to a similar
extent, each hand is being encoded uniquely. We also found
that task context was more important for the STN compared to
the SMC as evidenced by weaker across context generalization.
Taken together, these data suggest that activity in the SMC is
strongly associated with contralateral movement independent
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Fig. 7. Across context prediction performance. A) Context generalization. Percent change from within task R2 to across task R2 was calculated for each
electrode for SMC (left) and STN (right). A significant difference was found in context generalization between the two brain regions, with electrodes
within the SMC showing stronger context generalization. B) Across context performance. Performance of all predictive electrodes, measured as the
square of the Pearson correlation (R2), using EMG from either the same task (unimanual; Y-axis) or training and testing across tasks (unimanual to
bimanual; X-axis). Data are averaged prediction performance from the five held-out test sets. Upper right corner: Difference distribution for each brain
region. Insets: Time-locked average of LMP for contralateral and ipsilateral hand opening for E1 and E2. C) Held-out predictions. Held-out predictions of
the LMP time series for one test set of E1 and E2 when both hands were moving.

of context whereas STN activity is bilateral and more context
dependent.

Movement encoding in the SMC and STN
The current results provide further evidence that STN activity is
associated with movement kinematics (Yttri and Dudman 2016),
and overall, the level of encoding in STN was comparable to
that observed in SMC during unimanual movement. Interestingly,
encoding in SMC and STN diverged depending on the hand used
for encoding: For contralateral movement, SMC outperformed
STN in predicting neural activity whereas for ipsilateral move-
ment, STN outperformed SMC.

Examining motor encoding during bimanual movement, we
found that SMC had higher levels of encoding compared to STN, a
difference that was not found during unimanual movements. In
our categorical analyses, the number of electrodes that encoded
movement in the SMC increased from unimanual to bimanual
movement. This trend was not found in the STN, where descrip-
tively the number of electrodes encoding movement decreased
from unimanual to bimanual movements. Despite this increase
in the SMC, the motor encoding remained strongly contralateral
whereas in the STN, more electrodes showed bilateral encoding.
The SMC pattern may arise due to the increase in activity in the

opposite hemisphere during bimanual movement, signals that
would be communicated across the corpus callosum via direct
connections between homologous regions or indirectly via com-
munication between secondary motor and association cortices
(Kazennikov et al. 1999). This may require a concomitant increase
in contralateral encoding to ensure the coordinated movement of
that hand.

This speculation points to one limitation of the current study:
Our bimanual task required little coordination between the two
hands. Future research could use encoding models to track neural
activity during a behavioral task that requires coordination of
both hands towards a common goal (e.g. opening a jar). Such tasks
would also prove beneficial in that the movements of the two
hands would be quite distinct, making it easier to separate the
individual contributions of the ipsilateral and contralateral hands
during bimanual movements.

Given the low frequency component of the LMP signal, one
might be concerned that artifacts arising from cable movement
during the task could contaminate our results. We do not
believe that this is the case. First, electrodes from the same DBS
lead differ in their encoding performance for the same hand
movements (Fig. 4). If the LMPs were contaminated by artifacts
from cable movement, we would expect all electrodes on a
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particular lead to be similarly affected and thus yield similar
encoding performance. Second, cosine tuning of movement
direction has been observed in previous LMP recordings from
SMC and used to decode kinematic parameters, findings that
point to their physiological relevance in motor planning and
execution (Schalk et al. 2007; Gunduz et al. 2016). Third, in
a previous study using the same DBS leads and experimental
setup, we sought to identify potential cable movement artifacts
and found (i) that the frequency most related to movement in
the LFP was not correlated with the peak frequencies in the
EMG signals during behavioral tasks; (ii) that low frequency
components of the LMPs were evident in the STN signals at the
group level with the arm extended but otherwise immobile, and
(iii) low frequency signals were detected with both conventional
ring contacts and the higher impedance directional contacts
(Olson et al. 2022).

Task generalization
The STN has connections with several cortical (PFC, PMC, SMA
and M1) and non-cortical regions (Thalamus, Globus Pallidus,
Cerebellum; Benarroch 2008), making it an ideal hub to integrate
motor and non-motor information. The STN is hypothesized to
integrate environmental cues with ongoing behaviors (Sauleau
et al. 2009; Péron et al. 2013). Consistent with this idea, we
found that context (i.e. task condition) was more important in
the STN compared to the SMC. Specifically, the temporal pattern
of neural activity tracking contralateral movement in the STN
changed when the ipsilateral hand was also engaged in the task. In
contrast, neural activity tracking contralateral movements in the
SMC was similar across the unimanual and bimanual conditions.
This result is in line with the idea that neural activity in the SMC
is strongly associated with movement of the contralateral limb,
with effector independent activity being more evident during
preparation (Dixon et al. 2021) and in premotor and posterior
parietal regions (Merrick et al. 2022).

Implications for adaptive DBS
While DBS has been used as a therapeutic device to treat PD
for 30 years, the majority of DBS applications involve constant-
amplitude neurostimulation (Lozano et al. 2019). Adaptive DBS
(aDBS) has the potential to adjust stimulation parameters in
response to electrophysiological biomarkers, with tremendous
potential for improving patient outcomes (Starr 2018; Gilron et al.
2021). Understanding the functional role of the STN is likely
to be important for developing optimal aDBS algorithms. Our
results show that the STN has similar encoding capability for
contralateral and ipsilateral movement and is context sensitive.
This suggests that optimizing an aDBS device based on symptoms
on both sides of the body could outperform algorithms that focus
solely on the contralateral side. This perspective is further sup-
ported by the observation that unilateral DBS improves symptoms
on the ipsilateral side of the body, although to a lesser extent than
the contralateral side (Walker et al. 2009). Further studies should
examine the degree of bilateral encoding in the STN in other task
domains such as upper arm movements or foot movements.
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