Activating Response Codes by Stimuli in the Neglected Visual Field

Asher Cohen
Hebrew University

Robert D. Rafal
University of California, Davis, and Veterans Affairs Medical Center, Martinez

Richard B. Ivry
University of California, Berkeley

Carolyn Kohn
University of California, Berkeley

The ability of 2 patients with a clinical deficit of extinction to process stimuli presented contralaterally to their lesions was tested with 2 variants of the flanker task. The patients saw 2 colored stimuli, 1 of which appeared in the center of the visual field and the other either on the ipsi- or contralateral side. In the peripheral report task, the patients had to report the color of the peripheral stimulus. In the center report task, the patients had to report the color of the central stimulus. The patients were much slower in the peripheral report task when the target was presented contralaterally to their lesion. By contrast, the responses in the center report task were equally influenced by ipsi- and contralateral flankers. The findings indicate that the patients were not impaired in the perceptual processing or the activation of response codes for contralateral stimuli. Their impairment is related to processes needed for generation of overt responses.

Lesions of the posterior association cortex often produce the clinical sign of extinction. Although stimuli contralateral to the lesion may be detected when presented alone, the patient fails to report it if a simultaneous stimulus is presented ipsilaterally and will deny awareness of it. Extinction is one component of the neglect syndrome in which there is an associated failure to explore contralateral space or respond to objects there.

Extinction has been interpreted as an attentional deficit by assuming that attention is drawn more easily to the ipsilesional side (for reviews, see Baylis, Driver, & Rafal, 1993; Heilman, Watson, & Valenstein, 1985; Robertson, 1991). Thus, when stimuli are presented bilaterally, the ipsilateral stimulus will capture attention and the contralateral stimulus will be ignored. The current study examines the extent to which extinguished stimuli are processed. Assuming that extinction is due to an attentional deficit, the answer to this question is related to two important questions in the research on visual attention. First, what is the role of attention in the stream of processes that ends with a response to a visual stimulus? Second, what is the degree to which stimuli outside the focus of attention are processed by the visual system? Behavioral research on these questions in normal participants has led to ambiguous results (see Keele & Neill, 1977; for an overview of this controversy, see Kahneman & Treisman, 1984; Shiffrin, 1988).

Several studies have previously examined this question with patients. An article by Volpe, LeDoux, and Gazzaniga (1979) showed a striking dissociation in performance for extinction patients on naming and matching tasks. Two stimuli were presented on each trial, one in each hemifield. The participants had to judge whether the stimuli were the same or different and identify the stimuli (reporting only one stimulus following same judgments). All of the patients performed quite well on the same-different task even though they were unable to name the contralateral stimulus. This dissociation led Volpe et al. (1979) to conclude that it "... becomes difficult to assert that the so-called extinguished stimulus is extinguished at all. Rather, this disturbance seems to involve a selective breakdown in a mechanism through which information ... reaches some level which allows for verbal description, if not conscious awareness." (p. 724) However, Farah, Monhe, and Wallace (1991) found a similar dissociation between matching and naming with normal participants with degraded stimuli. They concluded that the argument for normal perception in extinction may be premature. The extent of perceptual analysis needed for naming may be more elementary than that needed for naming.

More recently, there has been a flurry of articles reporting extensive processing of contralateral information in patients with attention disorders. Berti et al. (1992) tested a patient with extinction on a variety of matching tasks. In accord with the findings of Volpe et al. (1979), the patient performed quite well when matching ipsi- and contralateral stimuli. More impressive, the patient was significantly better than chance when the task required affirmative responses to bilateral stimuli that were different exemplars from the same category (e.g., two different pictures of cameras). These data suggest that the extinguished stimulus is processed at least to a semantic level of representation.

It remains possible, however, that the semantic matches were based on physical similarities. It is quite likely that
different exemplars from the same category were more physically similar than exemplars from different categories. A more general problem with the matching task is that it requires that the participant process both stimuli. As a result, it is often not possible in this method to determine the extent of processing that is required for a correct response. In addition, it is not clear where the participants focus their attention. They could process both stimuli in parallel or shift sequentially from one stimulus to the next. Another complication is that it is difficult to compare the Berti et al. (1992) study with the study of Volpe et al. (1979) because the former examined a patient with a temporal lobectomy instead of patients with parietal lesions. Nevertheless, the matching studies indicate that some processing of extinguished stimuli may take place.

Two recent studies provide more convincing evidence that neglected information achieves a semantic level of representation. Berti and Rizzolatti (1992) had patients with neglect judge whether a stimulus presented in the ipsilesional hemisphere was a picture of a fruit or vegetable. The target was preceded by a contralesional prime that was either identical to the target, unrelated to the target, or a different exemplar from the same category. Significant categorical priming was obtained even though most participants denied ever having seen the primes in the contralesional hemisphere. Similar results were obtained by McGlinchey-Berroth, Milberg, Verfaellie, Alexander, and Kilduff (1993) with a lexical decision task following a presentation of a line drawing prime. Moreover, in this study, the target was presented foveally, and the prime was presented in either the ipsi- or contralesional hemisphere. The magnitude of priming was comparable for the two hemispheres, indicating that the perceptual analysis of the neglected prime was as extensive as for the non-neglected prime. McGlinchey-Berroth et al. (1993) also included an important control experiment in which the patients were required to match a prime that was presented peripherally to a target that was presented centrally after the offset of the prime. The performance of the patients in this task was much worse when the prime was presented in the contralesional side than when it was presented ipsilesionally. However, the target in this control experiment consisted of a picture rather than a string of letters; thus it is different from the experimental lexical decision task.

This body of evidence strongly supports the hypothesis that the deficit in extinction is not in perceiv ing contralesional stimuli per se, but rather in postperceptual processes that occur after the initial recognition of the stimulus. Furthermore, the study of McGlinchey-Berroth et al. (1993) also highlighted the importance of distinguishing between tasks in which the patients have to respond explicitly to the contralesional stimulus and in which patients are impaired (as in the control task) and tasks in which no explicit response to the contralesional stimulus is required (as in the experimental task) in which processing is observed.

Nonetheless, the methods used in the studies reviewed above have several limitations. In both of the priming studies, the prime preceded the target by a substantial amount of time (400 ms in Berti & Rizzolatti, 1992; 600 ms in McGlinchey-Berroth et al., 1993). Because the prime was first presented by itself and extinction patients may be able to process a single contralesional stimulus, it is possible that the patients first focused their attention on the contralesional prime and then shifted their attention to the ipsilesional target. Thus, in all these studies it is not entirely clear where the patients' attention was focused and to what extent they could report the contralesional stimuli at the time in which it was presented. Even more importantly, although it is clear that some semantic processing of the contralesional stimulus took place, it is not clear what is the extent of this processing. The studies indicate that this processing is sufficient to facilitate the response to the target, but the extent of semantic facilitation that is needed for such priming is not known.

The main goal of our study was to characterize the extent of processing of stimuli in the extinguished field. In particular, we tested whether patients with extinction not only process contralesional stimuli but also activate response codes that are associated with these stimuli. Furthermore, our hypothesis held that this processing of contralesional stimuli occurs even when they are presented simultaneously with foveally presented targets. To these ends, a modified version of the flanker task was used (e.g., Eriksen & Eriksen, 1974; Eriksen & Schultz, 1979).

In the basic form of the flanker task, one of two possible targets (e.g., X or O) is presented at a known location on each trial. Participants are instructed to respond by pressing one key for one of the targets and a different key for the other target. The target letter is flanked by two or more other stimuli in the task, and the key question is whether these flanking stimuli influence the ability to perceive or to respond to the target. The critical manipulation is the relation between the target and the flankers. The flankers may be either neutral (e.g., letter F), compatible (e.g., both target and flankers are O), or incompatible (e.g., the target is X and the flankers are O or vice versa). Even though the target occupies a known location, compatible flankers tend to reduce response latencies to the target and incompatible flankers tend to increase response latencies (e.g., Eriksen & Eriksen, 1974; Miller, 1991).

It is important to keep in mind that the interference from incompatible flankers is primarily due to their association with particular responses. In the example given above, participants are slower to respond to a Target X flanked by Os than to a Target X flanked by neutral letters (e.g., F),. This happens because O is associated with the alternative response, whereas F is not associated with any response. Thus, the flanker effect cannot be obtained only if the flankers are fully identified and the response association is activated. Indeed, a common interpretation of these results (e.g., Eriksen & Schultz, 1979) is that the interference caused by incompatible flankers occurs because these flankers compete with the target for attentional resources needed in response selection which leads to a slower response. The facilitation of compatible flankers is the result of increased activation of the response code associated with the target.

In our modified task, a target located in the center of the display was flanked by a single irrelevant stimulus located in either the ipsi- or contralesional hemisphere. In the main experimental task, the participants had to focus on the central target and respond to it only while ignoring the peripheral flanker. The critical comparison in this paradigm is between
effects of the ipsilesional flanker and the effects of the contralateral flanker. If the patients are able to process contralateral stimuli and activate their response code, we should find a flanker effect from extinguished stimuli. Because we know that patients with extinction suffer from an attentional deficit to contralateral stimuli, this result would also indicate that stimuli can be identified and their response code activated even when attention is focused elsewhere.

In the current experiment, participants judged whether a centrally presented target was red or green. This target was flanked by a second stimulus that was red, green, or blue. The task imposes no need for processing of the peripheral flanker because the color of this object provides no information as to the color of the target object. Moreover, the central target and peripheral flanker can be presented simultaneously. In this manner, a comparison of the magnitude of the flanker effect can be made between the ipsi- and contralateral conditions. Because the onset of the flanker is simultaneous with that of the target and not preceding it, as was the case in the priming studies summarized earlier, there was no opportunity for attention to be drawn to a contralateral flanker before the target appeared. Thus, we could be more confident that any effect of the contralateral flanker is not attributable to some allocation of attention to it before the target appeared.

Another important addition in our study is the inclusion of a control task to examine the extent of extinction with the same stimuli. We showed the participants the same stimuli as in the experimental task but asked them to ignore the center stimulus and instead report the color of the peripheral stimulus. Thus, the positions of the target and flanker were reversed. The peripheral target could either be presented in the ipsilateral or contralateral hemifield. Both of our patients had extensive experience with conventional clinical tests, and reliable extinction was observed on conventional tests where two stimuli are presented and the patient is required to attempt to report both of them. In addition, typical examination of extinction involves a brief presentation of the stimuli, whereas the stimuli in our task were presented until the participant responded. When not required to report the central target and encouraged to ignore it and presenting the stimuli until the onset of response, both were able to do this task. Nevertheless, as will be shown, the central stimulus in the control task did strongly compromise responses to contralateral targets; and this provided a measure similar to the one referred to by Posner, Walker, Friedrich, and Rafa{l}(1984) as an “extinction-like reaction time pattern.” This confirmed the fact that the patients were more impaired in responding overtly to contralateral stimuli and provided a measure of the severity of this impairment.

Inclusion of this control peripheral report task provided two benefits. First, a quantitative assessment of extinction was obtained, which not only supplemented the clinical assessment of extinction and neglect, but also provided a quantitative measure of extinction with the identical stimuli used in the experimental task. Second, by assessing visual field differences in the experimental and control tasks, we compared the extent implicit processing of extinguished stimuli (in the experimental task) with deficits observed when patients were required to make an overt response to extinguished stimuli (in the control task).

Method

Participants

Two patients were tested on multiple sessions. Lesion reconstruction produced from MRI scans are shown in Figure 1 for the 2 patients. Six years prior to testing. Patient E.H. had a stroke affecting the left hemisphere resulting in right hemiparesis and persistent right hemi-extinction. Minor word-finding difficulties were the only signs of aphasia. MRI revealed bilateral periventricular lacunae and two discrete infarctions in the left hemisphere. The anterior focus was in the frontal corona radiata and operculum, involving the dorsolateral prefrontal cortex including the frontal eye fields. The posterior focus was in the lateral occipital and parieto-occipital junction involving the inferior parietal lobule, but not the superior parietal lobule or the temporo-parietal junction (see Figure 1). Patient C.R., 12 years prior to testing, had a stroke that affected almost the entire right middle cerebral artery territory. The lesion involved the inferior and superior parietal lobules, the temporo-parietal junction, the frontal and parieto-occipital operculae, the insula, the basal ganglia and internal capsule, and much of the dorsolateral prefrontal cortex including motor and premotor cortex area 45 and 46 and the frontal eye fields (see Figure 1). Although alert and vigorous, he has a dense left hemiplegia and hemianesthesia and left visual extinction with intact visual fields.

Stimuli and Procedure

The stimuli and basic procedure were identical for both control and experimental tasks. The patients sat in front of a computer screen and saw two colored stimuli on each trial. One of the stimuli was presented at the center of the screen, and the other stimulus was presented to either the left or right of the central stimulus. The stimuli were always identical in shape (the letter O) and were presented in one of two sizes. From a viewing distance of 100 cm, the center stimulus subtended a visual angle of approximately 0.35 degree of arc in height and 0.25 degree in width. The peripheral stimulus was larger and subtended a visual angle of approximately 0.57 degree in height and 0.52 degree in width. The horizontal edge-to-edge distance between the center and peripheral stimulus was 0.63 degree of arc. The stimuli were arranged so that the vertical midline of the center and peripheral O’s was identical.

In both the control and experimental conditions, the participants’ task was to name the color of the target stimulus. In the control condition, the peripheral report task, the peripheral stimulus was the target and the center stimulus was the distractor. In the experimental condition, the center report task, the center stimulus was the target and the peripheral stimulus was the flanker. The color of the target was either green or red, and the patient was required to report this color. Because E.H. had difficulty using a response board, he made his responses orally, and an experimenter entered the responses on the response board. The experimenter was positioned out of sight of the monitor and was unaware of the correct response for each trial. Thus, the reaction time (RT) data for E.H. overestimates his actual RTs by a constant (estimated to be about 500 ms). C.R. made his responses on the response board directly, with the middle finger of his right hand to indicate that the target was green and the index finger of his right hand to indicate that the target was red (the same mapping was used for the experimenter entering E.H.’s responses). The color of the flanker stimulus was green, red, or blue. When it was green or red, it was either

1 E.H. has a history of word difficulties as well. However, he did not have any difficulty in expressing the word green and red required in this task.
Figure 1. Neuroimage reconstructions for Patient E.H. (left) and Patient C.R. (right).
CONTRALESIONAL PROCESSING IN EXTINCTION

169

compatible or incompatible with the target color. Blue flankers served as a neutral baseline condition.

Each trial began with the presentation of three horizontal bars (0.35 in length) indicating the possible positions of the two stimuli. One second later, an asterisk appeared above the bar in the center location. This served as a fixation marker as well as an alerting signal. After 1.4 seconds, the asterisk was erased. Five hundred milliseconds later, the stimulus display of the two colored Os was presented. One of these stimuli was always positioned above the bar in the center location. A second stimulus was positioned above the bar located to the right or left of the center position. The display remained visible until the participant responded. The patients were instructed to ignore the flanker stimulus (center stimulus in the control condition and peripheral stimulus in the experimental condition) and report only the color of the target letter as quickly as possible. The horizontal bars and difference in size between the two stimuli were included to eliminate the possibility that the participant would not know which stimulus was the target. Error responses were followed by feedback.

Overall, there were 24 different trial types: 2 Tasks (peripheral report and center report) × 3 Flanker Types (compatible, neutral, and incompatible) × 2 Sides (peripheral report task: left and right targets; center report task: left and right flankers) × 2 Target Colors (green and red). On half of the trials, the target color was green, and on the other half the target color was red. The three flanker types were each presented on one third of the trials. The side of presentation, flanker type, and target color were randomized within blocks of 96 trials each. To minimize the possibility that the participants could become confused as to which stimulus to respond to, only one task was performed during a given test session. Each participant completed eight test sessions, four during which they responded to the center stimulus and four to the peripheral stimulus. The sessions alternated between the two tasks with a minimum of 1 week between each test session. Each session consisted of one practice block of 48 trials and four test blocks of 96 trials. Participants were given a break of approximately 3 min between blocks.

Results and Discussion

E.H. has a left hemisphere lesion and C.R. a right hemisphere lesion. To the extent that they suffer from extinction, it was expected that E.H. would be slower in the peripheral report task when the target was located in the right peripheral location and C.R. would be slower in the peripheral report task when the target was located to the left of center. The difference in RT between the right and left side stimuli would give us a quantitative estimate of the severity of the patient's attention deficit. The central question was the relative influence of ipsi- and contralesional flankers in the central task.

Because the results of the four sessions were similar, the data were averaged across sessions. Figure 2 presents the main data averaged across target color (green and red). The top shows results for E.H. and the bottom shows results for C.R. Within each task, separate results are shown for the three flanker types for each side.

The data from the peripheral report task were analyzed in a repeated measures analysis of variance (ANOVA) with the 2 patients as a between-subjects variable and the sessions as the repeating measure. As expected, latencies to the contrales-

\[\text{The current center task is different from the typical flanker experiment in that there was just a single flanker on each trial. The peripheral report task had never been used before. Therefore, we first tested normal college students on both tasks. Results in both tasks were similar: Participants were fastest in the congruent conditions, slowest in the incongruent conditions, and intermediate in the neutral condition. In addition in both tasks, there was no difference between results obtained with the right peripheral stimulus and the left peripheral stimulus. The important point for our purposes is that the to-be-ignored stimulus was processed by the participants and influenced their reaction times. That is, both the center report and peripheral report task yielded results similar to that obtained in studies using the standard flanker task (e.g., Eriksen & Eriksen, 1974).} \]

\[\text{The pattern of results from the individual analyses essentially mirrored that obtained in the combined analyses with minor differences. As can be expected from Figure 2, in all of the analyses, the latencies for E.H. were significantly slower than those for C.R. An interaction involving the subject variable was obtained in one case: On the center report task, there was a Subject × Side interaction, F(1, 6) = 6.12, p < .05, because the side effect was larger for C.R. However, as confirmed in separate analyses for each participant, the side factor was significant for both patients.} \]
sional stimuli were much slower than responses to ipsilesional stimuli, \(F(1, 6) = 78.66, p < .001 \). For E.H., RTs to ipsilesional stimuli were 222 ms faster than for contralesional stimuli. For C.R., ipsilesional stimuli were responded to 333 ms faster than contralesional stimuli. In addition, a significant effect of flanker type was also obtained, \(F(2, 12) = 15.19, p < .001 \). The interaction of Side × Flanker Type was not significant, \(F(2, 12) < 1.0 \). Pairwise comparisons indicated that responses on incongruent trials were significantly slower than responses on congruent trials, \(F(1, 6) = 22.98, p < .01 \), and neutral trials, \(F(1, 6) = 10.56, p < .02 \).

The error data were in agreement with the latency data. E.H. responded incorrectly on 19.0% of the trials when the target was contralesional in comparison to an error rate of 9.4% for ipsilesional trials. Moreover, responses on 24.2% of incongruent contralesional trials were incorrect, a value almost twice as large as that observed for congruent contralesional trials (12.8%). For the most part, C.R. showed the same pattern but was more accurate, averaging 3.7% and 10.0% errors for ipsi- and contralesional targets, respectively. The only condition for which his error rate was higher than 5.0% was for incongruent contralesional trials. Here, C.R. made errors on 22.3% of the trials.

In summary, the peripheral report task verifies that the patients suffer from extinction. Responses to contralesional stimuli were slower than responses to ipsilesional stimuli. However, for both sides, the color of the center influenced processing as indicated by the difference between the RTs for the congruent and incongruent conditions.

The results for the center report task are shown in Figure 2 where a significant effect of side was obtained, \(F(1, 6) = 73.78, p < .001 \). Unlike the peripheral report task, both participants were slower in responding when the peripheral flanker was on the ipsilesional side. E.H. was 92 ms slower when the flanker appeared on the left ipsilesional side and C.R. was slower by 46 ms overall when the center target was flanked by a peripheral stimulus on the ipsilesional right side. Although this result may at first appear somewhat counterintuitive, it actually provides another demonstration of the patients' extinction. Although the patients knew that the target would appear in the center and could focus on this location in advance, the appearance of another stimulus more ipsilesional than the target caused interference.

More interestingly, latencies to identify the color of the center target were affected by the color of the peripheral flankers. A main effect of flanker type was obtained, \(F(2, 12) = 16.30, p < .001 \), and pairwise comparisons indicated that responses on incongruent trials were slower than responses on congruent trials, \(F(1, 6) = 21.08, p < .01 \), and neutral trials, \(F(1, 6) = 18.25, p < .01 \). Most interestingly, the Side × Flanker type interaction was not significant, \(F(2, 12) < 1.0 \). For E.H., the difference between the incongruent and congruent mean RTs was 43 ms for ipsilesional flanking and 87 ms for contralesional flanking. Comparable figures for C.R. were 29 ms and 54 ms for the ipsi- and contralesional flanking, respectively. If anything for both participants, the trend was for the congruency effect to be larger for contralesional flankers than for ipsilesional flankers.

Interestingly, there is a consistent difference between the incongruent condition and the neutral condition indicating interference when incongruent flankers appear with the target. Similarly, there is a consistent difference between the incongruent condition and the congruent condition. However, the

4 We also examined possible differences between the two color targets. The pattern of results for both patients was similar for both targets in the peripheral report task. For C.R., the difference between the ipsi- and contralesional sides was 246 ms in the congruent condition, 319 ms in the incongruent condition, and 193 ms in the neutral condition when the target was red. The difference between the ipsi- and contralesional sides was 376 ms in the congruent condition, 425 ms in the incongruent condition, and 351 ms in the neutral condition when the target was green. The difference between incongruent and congruent condition was 85 ms in the ipsilesional side and 158 ms in the contralesional side when the target was red. The difference between incongruent and congruent condition was 42 ms in the ipsilesional side and 91 ms in the contralesional side when the target was green.

For E.H., the difference between the ipsi- and contralesional sides was 159 ms in the congruent condition, 208 ms in the incongruent condition, and 121 ms in the neutral condition when the target was red. The difference between the ipsi- and contralesional sides was 224 ms in the congruent condition, 246 ms in the incongruent condition, and 352 ms in the neutral condition when the target was green. The difference between incongruent and congruent condition was 87 ms in the ipsilesional side and 106 ms in the contralesional side when the target was red. The difference between incongruent and congruent condition was 83 ms in the ipsilesional side and 105 ms in the contralesional side when the target was green.

5 Our primary measure of extinction in this study was the difference in latencies in the peripheral task. The typical clinical measurement of extinction is construed as a lack of awareness of contralesional stimuli in the presence of more ipsilesional stimuli. As mentioned earlier, this test requires the patient to report both ipsi- and contralesional stimuli and involves a brief presentation of the stimuli. Both C.R. and E.H. show extinction as determined by this test. To relate our study more directly to the clinical phenomenon, we tested C.R. on a modified version of the peripheral report task. The stimuli in this modified peripheral report task were identical to those of the original task. The only difference was the stimuli appeared on the screen for a limited duration and then disappeared. Similarly to the original task, C.R. had to report the peripheral stimuli. In this task, however, the independent variable was accuracy rather than latency.

Because C.R.'s mean latency to contralesional stimuli on the peripheral report task was 1,211 ms, we expected him to perform reasonably well on the modified task with an exposure duration of 1,000 ms (assuming some time for response execution). Surprisingly, when the stimuli were presented for 1,000 ms, C.R. did not report the color of the contralesional targets. He claimed not to see and did not recognize these trials and was very reluctant to guess. In a later session, the exposure duration was increased to 2,140 ms over four blocks of 24 trials each, 12 per side. C.R. failed to identify the color of the ipsilesional target on only 1 trial out of 48. In contrast, C.R. was correctly on only 17 of the 48 trials with contralesional targets, with the alternative color selected on 13 trials, and no response made on the remaining 18 trials. We were not able to resolve the discrepancy between C.R.'s difficulty on this task and his high level of accuracy in the main study on the peripheral task because C.R. found the limited exposure experiment frustrating and unpleasant. It is possible that not seeing the target on a significant portion of the trials affected C.R.'s willingness to concentrate. Nonetheless, the limited exposure experiment provides additional evidence that C.R. shows extinction.

* We also looked at possible differences between the two color targets in the center report task. There was no hint of such a difference for
CONTRALESIONAL PROCESSING IN EXTINCTION

The results of the present study have important implications for understanding the nature of extinction. A longstanding debate in neuropsychology concerns the source of the extinction deficit. As found in other patients with extinction (e.g., Posner et al., 1984), E.H. and C.R. could respond to contralesional stimuli under some conditions. Although both had extinction with brief bilateral presentation, they were able to report a contralesional stimulus in the presence of a central distractor when the center stimulus did not require action and the peripheral target remained visible until a response was made. Even under these conditions, both patients were considerably slower to respond to contralesional targets in the peripheral report task. These findings suggest that at the very least there was considerably more extinction in the contralesional field than in the ipsilesional field. Some theorists (e.g., Bender, 1952) have attributed extinction to low level sensory problems, suggesting that there is impaired perceptual processing of the contralesional signal. The finding of the peripheral report task would be consistent with this account. However, a flanker at the same location on the center report task produced a comparable amount of interference as an ipsilesional flanker despite the stronger extinction in the contralesional field. Thus, these results suggest a deficit in postperceptual processes, a conclusion that is in accord with a growing body of evidence on the nature of extinction (e.g., Berti & Rizzolatti, 1992; McGlinchey-Berroth et al., 1993; Volpe et al., 1979).

Our findings provide new insights into the locus of postperceptual processing at which extinction occurs. The basic paradox to be explained is why the processing of contralesional stimuli appears to differ depending on whether this processing is assessed directly (as in the peripheral report task) or indirectly (as in the center report task). One possibility is that contralesional stimuli are at a disadvantage in activating response codes in comparison to ipsilesional stimuli. The present results are not consistent with a deficit at this stage of processing. As discussed earlier, the congruency effect is attributed to the activation of response codes by the flanking stimuli. Facilitation on congruent trials is assumed to reflect the activation of a common response code by both the target and flanker. Interference on incongruent trials is assumed to reflect the activation of competing response codes by the target and flanker. Thus, a deficit in activating response codes associated with contralesional stimuli should predict that the congruency effects would be diminished when the flanker is presented in the contralesional hemisfield. This prediction was not supported by the data. Similar congruency effects were found for ipsi- and contralesional flankers, suggesting that contralesional stimuli activate response codes in a manner similar to ipsilesional stimuli.

A second hypothesis is that extinction reflects a specific deficit in generating overt responses to contralesional stimuli. This hypothesis can account for the direct-indirect dissociation seen in the current results as well as previous findings. For example, McGlinchey-Berroth et al. (1993) found that patients were clearly impaired in explicitly reporting contralesional stimuli even though these stimuli produced normal priming effects on a central target. As in our study, one difference between the priming task and the control task in the study of McGlinchey-Berroth et al. (1993) was the need to generate an overt response in the control task. By this account, response codes were activated in a normal manner by contralesional stimuli, but selection of an overt response code linked to a contralesional stimulus is impaired.
With a very different paradigm, Baylis et al. (1993) have reported evidence for an impairment related to overt response selection in extinction patients. They presented colored letters to extinction patients, one object to each hemifield. The patients were asked to report what they saw on each side. In one condition, the patients were asked to report only the letters and in another condition they were asked to report only the colors. When the patient had to report the letters, they had difficulty in reporting a contralesional stimulus in the bilateral condition when that stimulus was identical in shape to the ipsilesional stimulus. When the two letters were different, the patients were able to report both letters on a significantly greater number of trials. Importantly, the color of the letters had no effect on the patients’ response. A similar result was obtained on the color report task. Again, the patients were most impaired in reporting the color of the contralesional stimulus when the ipsilesional stimulus was of the same color. The identity of the letters did not influence their responses. As in our study, these results indicate that the contralesional stimuli are processed and the extinction deficit is due to postperceptual processes at a stage of overt response selection.

Although our study suggests that the problem of extinction lies in generating overt responses, other interpretations are possible as well. It is possible that other as-yet-unknown processes involved in response selection are impaired and that these impairments lead to the extinction present in the peripheral report task. Future studies are needed to address this issue.

Given the evidence (see Heilman et al., 1985; Robertson, 1991) that the deficits of extinction patients are due to an attentional impairment, we suggest that stimuli can be processed without attention. It has been argued that one role of attention is to communicate to a system in the generation of overt responses. For example, based on PET studies, Posner, Petersen, Fox, and Raichle (1988) argued that, whereas posterior regions of the cortex play a dominant role in perceptual processing, overt response selection is done by systems located in the anterior part of the brain. It is possible that patients with extinction are impaired in the ability to communicate information from posterior perceptual systems to anterior overt response selection systems, normally done by attentional mechanisms. However, our study had just 2 patients and thus did not provide any evidence concerning the anatomy of extinction.

In the present study, patients with extinction processed ipsi- and contralesional color information in a similar manner up to some level below that needed for making overt responses. However, this does not mean that the same result would hold for all visual stimuli. Psychological, neuroanatomical, and neurophysiological evidence indicates that the visual scene is first parsed into features, such as color, line orientation, and direction of motion (reviewed in DeYoe & Van Essen, 1988; Livingstone & Hubel, 1987; Treisman, 1986). Objects consisting of a particular conjunction of features are analyzed by the visual system at a later stage (e.g., Cohen, 1993; Cohen & Ivry, 1989, 1991; Ivry & Prinzmetal, 1991; Prinzmetal, Presti, & Posner, 1986; Treisman & Schmidt, 1982). The task of the patients in our study was to identify colors. Thus, it is possible that single features, such as color and line orientations, can be analyzed in a normal manner even if overt responses to those features are impaired (as was demonstrated in this study). By contrast, identification of conjunction of features may require attentional mechanisms. Cohen and Rafal (1991) reported a case study of a patient with a posterior parietal lobe damage who showed no clinical evidence of extinction. This patient was impaired in her ability to correctly combine color and shape information for stimuli presented in the contralesional hemifield, despite normal performance in identifying the simple features. Importantly, the deficit of this patient in feature integration appeared to be directly related to her deficit in orienting attention. Taken together, the results of the current study and Cohen and Rafal (1991) suggest dissociable attentional deficits. One deficit is characterized as a problem in binding simple visual features into objects. This deficit can arise without a concurrent deficit in making overt responses (at least to simple features), as shown by Cohen and Rafal (1991). The second deficit is characterized as a problem in generating overt responses to objects and, as shown by the current study, this mechanism is impaired in patients with extinction. It remains to be seen whether these patients are also impaired in perceiving conjunctions of features presented in the contralesional hemifield.

Finally, an interesting parallel may be drawn between the pattern of findings obtained with patients who have attentional deficit, such as patients with extinction and neglect, and the pattern of findings for patients with memory deficits. For recent reviews, see Schacter, 1992; Squire, 1992). The deficit observed in these two groups of patients are very different. Yet, in both domains, the deficit of the patients is primarily manifested when the patients are asked to respond overtly to stimuli. Although it is possible that these similar behavioral symptoms are coincidental, they may also reflect a fundamental property of the cognitive architecture. For example, the impaired ability to make overt responses in the face of relatively normal processing as assessed by indirect measures may reflect the greater sensitivity of processes associated with consciousness to neural damage. Perhaps these processes reflect more recent adaptations and as such are more susceptible to brain injury. The special status of tasks requiring overt responses across task domains is in need of direct investigation.

References

Received October 15, 1993
Revision received July 5, 1994
Accepted November 4, 1994