Is Visuomotor Adaptation Classical Conditioning?
Guy Avraham¹, Jordan A Taylor², Richard B Ivry¹, Samuel D McDougle¹
1 Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
2 Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA

Introduction
- Two paradigmatic tasks for studying cerebellar-dependent learning processes:
 - Sensorimotor learning (e.g., prism adaptation [1]).
 - Classical / Pavlovian conditioning [2] (e.g., eyeblink conditioning).

- The two literatures have developed with minimal cross-fertilization, despite the fact that they share many key properties.
- Here, we take a look at sensorimotor adaptation through the lens of classical conditioning.

Methods

Experimental setup

<table>
<thead>
<tr>
<th>Task</th>
<th>CS (Plan/Tone/Light)</th>
<th>Reach</th>
<th>US (Clamp)</th>
<th>UR (Feedback correction?)</th>
<th>CR (Adapted response)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CS (Plan/Tone/Light)</td>
<td>Reach</td>
<td>US (Clamp)</td>
<td>UR (Feedback correction?)</td>
<td>CR (Adapted response)</td>
</tr>
</tbody>
</table>

Clamp feedback

Time

Early/Late
Clamp Feedback

Assignments of CS+ (15° Clamp) and CS- (0° Clamp) counterbalanced across participants

Experimental protocols

Experiment 1: Differential Conditioning

Experiment 2: Compound Conditioning

\[V_{x}^{n+1} = V_{x}^{n} + \Delta V_{x}^{n} \]

\[\Delta V_{x}^{n} = \alpha \cdot \beta \cdot (\lambda - V_{tot}) \]

- We compare the Rescorla-Wagner model to a state-space model, the classic approach for modeling sensorimotor adaptation

Results – Experiment 1: Differential Conditioning

Simulation

Experimental results

Results – Experiment 2: Compound Conditioning

Simulation

Experimental results

Discussion

- We propose that implicit visuomotor adaptation may be understood as, fundamentally, an associative learning process.
- Consistent with this proposal, the Rescorla-Wagner model explains both the differential and compound conditioning effects. The conventional state-space model does not.
- However, neither model explains the non-zero steady-state hand angle during washout. This behavior could be driven by an additional gaze-dependent effect.
- With these and future experiments, we hope to bring theories of implicit visuomotor adaptation closer to established models of cerebellar learning in animal neurophysiology.

Acknowledgment

The study is supported by the National Institute of Health, grants NS105839 and NS092079. The authors thank Marina Iranmanesh and Janet Hwang for the help in data collection.

References

[1] Helmholtz (1909), Treatise on Physiological Optics
[2] Pavlov (1927), Conditioned reflexes

Contact
Guy Avraham: guyavraham@berkeley.edu